CHAPTER 1 (6 Marks)
INTRODUCTION

1.1 Computer Organization and Architecture

Computer Organization Computer Architecture
Describes how hardware components |Deals with the design and specification
of a computer system work together. |of computer systems and components
How the computer works from an How to design and optimize computer
engineering perspective systems to achieve specific goals
How the computer do it What the computer does
Deals with low level design issues Deals with high level design issues
( Logic and Circuits) ( system and computer)

Structural Relationship Functional Behaviour

It comprises of physical units like It comprises logical functions such as
Circuit Design, Peripherals Instruction sets, Addressing Modes,
ALU, CPU and Memory Data Types and registers

For designing a computer For designing a computer it's
organization is decided after it's architecture is fixed first

architecture

1.2 Structure and Function

» Structure is the way in which components relate to each other
» Function is the operation of individual components as part of
the structure

Q. functional view and four types of operations performed in
computer



Operating Environment
(source and destination of data)

All computer functions are-:

>

Data processing: This refers to the ability of a computer to
perform calculations, manipulate information, and execute
instructions based on input data.

Data storage: Computers have various types of memory that
allow them to store data either temporarily (in RAM) or
permanently (on a hard drive or other storage device). This data
can be accessed and manipulated as needed by the computer's
processor.

Data movement: This involves the ability of a computer to
transfer data between itself and other devices or networks. This
can include sending and receiving data over a network, copying
files between storage devices, or even communicating with
other types of hardware devices such as printers or scanners.

Control: In order to perform these functions effectively, a
computer needs to be able to manage and control its own
operations. This can involve coordinating data processing tasks,
managing storage resources, and controlling the flow of data
into and out of the system. Control also involves managing the



interaction between the user and the computer, such as
through a user interface or command line.

The four main structural components of a computer system are:

» Central Processing Unit (CPU): The CPU is the "brain" of the
computer and is responsible for executing instructions and
performing calculations. It contains one or more processing
cores, which can execute multiple instructions simultaneously
through pipelining and other techniques.

» Main Memory: Main memory, also known as random-access
memory (RAM), is used to temporarily store data and
instructions that the CPU is actively using. It is volatile, meaning
that its contents are lost when the power is turned off.

> Input/Output (1/0): Input/output refers to the methods by
which a computer interacts with the external world. Input
devices such as keyboards, mice, and touchscreens allow users
to enter data into the computer, while output devices such as
monitors, printers, and speakers display or communicate the
results of computations.

> System Interconnections: System interconnections refer to the
ways in which the various components of the system are
connected and communicate with each other. This includes
buses, switches, and other interconnect technologies that allow
data to be transferred between components.

Q. What is performance balance? why required?

Performance balance, also known as workload balancing, is the
process of distributing computing tasks and resources in a system
to achieve optimal performance. It involves managing the
allocation of processing power, memory, storage, and network



bandwidth to ensure that all parts of the system are functioning
efficiently and effectively.

Performance balance is required because modern computer
systems are complex and consist of multiple interconnected
components. These components, such as processors, memory, and
storage devices, have different capabilities and limitations. In
addition, different software applications have different demands on
system resources. If these resources are not properly balanced,
certain components of the system may become overloaded,
leading to performance degradation and system failures.

Q. Explain design goals and performance metrics?

Design goals are the primary objectives that a computer system
architect or designer aims to achieve when creating a system.
Performance metrics are measurements used to evaluate the
effectiveness and efficiency of the system in meeting those design
goals.

Some common design goals for computer systems include:

» Performance: This refers to how fast the system can perform
tasks and how much work it can handle in a given amount of
time.

> Reliability: This refers to the system's ability to perform
consistently and predictably over time, without experiencing
crashes or other errors.

» Availability: This refers to the system's ability to remain
operational and accessible to users over time, even in the face
of hardware or software failures.

» Security: This refers to the system's ability to protect against
unauthorized access or use, as well as its ability to maintain
data privacy and integrity.



Some common performance metrics used to evaluate computer
systems include:

» Throughput: This refers to the amount of work that a system
can perform in a given amount of time.

» Latency: This refers to the amount of time it takes for a system
to respond to a request or perform a task.

> Response time: This refers to the amount of time it takes for a
user to receive a response to a request.

» Scalability: This refers to the system's ability to handle
increasing workloads without suffering a significant decrease in
performance.

Q. how can we maintain performance balance between
processor and memory

Maintaining performance balance between processor and memory
is crucial for achieving optimal system performance. The processor
and memory are two of the most critical components in a
computer system, and their performance is closely linked. If the
processor is too fast for the memory, the processor will be forced
to wait for data to be fetched from memory, resulting in
performance degradation. Similarly, if the memory is too slow for
the processor, the processor will spend too much time waiting for
data to be transferred, leading to decreased performance.

There are several techniques that can be used to maintain
performance balance between processor and memory:

» Cache optimization: Caching is a technique used to improve
performance by storing frequently used data in a faster, smaller
memory called a cache. By optimizing the cache, designers can



ensure that the processor has access to the data it needs
quickly, without overloading the memory.

Memory bandwidth optimization: Memory bandwidth refers
to the amount of data that can be transferred from memory to
the processor in a given amount of time. By optimizing memory
bandwidth, designers can ensure that the processor can access
the data it needs quickly and efficiently.

Processor speed throttling: If the processor is too fast for the
memory, it may be necessary to slow down the processor to
maintain performance balance. This can be achieved through
techniques such as clock throttling or dynamic voltage scaling,
which reduce the processor speed when it is not needed.

Memory optimization: By optimizing the memory, designers
can ensure that it is able to keep up with the demands of the
processor. This can involve techniques such as increasing
memory capacity, improving memory access times, or using
specialized memory technologies such as DDR (double data
rate) or HBM (high-bandwidth memory).

Q. computer functions with different cycles

>

Fetch: The processor retrieves the instruction from memory by
sending the address of the instruction to the memory controller.
The memory controller retrieves the instruction and sends it
back to the processor.

Decode: The processor decodes the instruction by determining
what operation to perform based on the opcode and operands
specified in the instruction. The operands may be registers or
memory locations.

Execute: The processor performs the operation specified by the
instruction. This may involve arithmetic or logical operations,



data transfers between registers and memory, or branching to a
different instruction.

» Store: The processor stores the result of the operation back in

memory or a register. This may involve writing the result to a
memory location or updating a register with the new value.

Computer Function (Youtube)

The basic function performed by a computer is execution of a
program, which consists of a set of instructions stored in memory.

Fetch Cycle Execute Cycle

Execute
Instruction

Fetch Next
Instruction

START 4

Operand

Instructin
aperation
decoding

Operand
address
calculation

Data
Operation

Return for string
or vector data

Instruction complete,
feteth next instruction

Fig: Instruction cycle state diagram

> Instruction address calculation (IAC): In this state, the CPU
calculates the memory address of the next instruction to be

executed.


https://www.youtube.com/watch?v=yk63uBmkz5c

> Instruction fetch (IF): In this state, the CPU retrieves the
instruction from memory address calculated in the previous
step. The instruction is then stored in the instruction register
(IR).

> Instruction operation decoding (IOD): In this state, the CPU
decodes the instruction stored in the IR to determine what
operation needs to be performed.

» Operand address calculation (OAC): In this state, the CPU
calculates the memory address of any operands required by the
instruction.

» Operand fetch (OF): In this state, the CPU retrieves any
operands required by the instruction from memory. The
operands are then stored in temporary registers or memory
locations for use in the next step.

» Data operation (DO): In this state, the CPU performs the actual
operation specified by the instruction. This may involve
performing arithmetic or logical operations on the operands
retrieved in the previous step.

» Operand address calculation (OAC): In this state, the CPU
calculates the memory address where the result of the
operation should be stored.

» Operand store (OS): In this state, the CPU stores the result of
the operation back into memory or registers, depending on the
nature of the instruction. This completes the execution of the
instruction

Interrupts



An interrupt is a signal sent to the processor by a device or
program, indicating that an event has occurred that requires the
processor's attention.

Fetch Cycle Execute Cycle Interrupt Cycle
S Interrupts
Disabled
Check for
START A 4 » E:: tcrhu?um Interrupt:
on Process Interrupt
Enabled

Fig: Instruction Cycle with Interrupts

Operand

Instructin
operation
decoding

Operand
address
caleulation

Data
Operation

Instruction compliete,
feteth next instruction

Retrn for string
or vector dita

Fig: Instruction cycle state diagram, with interrupts

> Interrupt check (IC): In this state, the CPU checks for any
pending interrupts. If an interrupt is pending, the CPU saves the
current state of the system and moves to the interrupt service
routine (ISR).

> Interrupt : In this state, the CPU executes the code necessary
to handle the interrupt. Once the ISR is complete, the CPU
returns to the point in the program where the interrupt
occurred..



Interconnection structure

Q . explain the interconnection structures of computer. Also
the different operations over them?

The interconnection structure of a computer system is responsible
for connecting different components such as the CPU, memory,
and 1/O devices to facilitate the transfer of data and control signals
among them.

>

Memory Connection: In the case of memory, the
interconnection structure receives and sends data, addresses
and control signals. It also deals with timing signals to ensure
that data is transferred at the right time. The memory is
typically connected to the CPU and other devices through a bus
system, which is a shared communication channel that enables
multiple devices to communicate with each other.

I/o connection : Input/output devices are typically connected
to the interconnection structure through 1/0 ports, which act as
interfaces between the devices and the computer system. These
ports may be specialized for specific types of devices, such as
USB ports for connecting USB devices, or they may be more
general-purpose, such as serial or parallel ports.

CPU Connection : The CPU is also connected to the
interconnection structure through a bus system, which allows it
to communicate with other devices in the system. The bus
system typically consists of multiple buses, each dedicated to a
specific type of communication, such as data transfer, address
transfer, or control signal transfer.

The CPU interacts with memory and I/O devices in different ways,
depending on the operation being performed. Some examples of
operations include:



> Instruction Fetch
> Data Read

> Data Write

> 1/0 Read

> 1/0 Write

Bus Interconnection
Q. Explain Bus interconnection?

In computer organization and architecture, bus interconnection
refers to the way in which different components of a computer
system are connected to each other using a set of shared
communication lines called a bus.

The bus is used to transfer data, instructions, and control signals
between different components such as the CPU, memory, and 1/O
devices. The bus interconnects these components by providing a
common communication pathway for the transfer of information.

There are different types of buses used in computer systems, such
as the address bus, data bus, and control bus.

» Address Bus: This type of bus is used to transfer memory
addresses between the components of the computer system,
such as the CPU and the memory. The address bus is a
unidirectional bus, meaning that data can only be transferred in
one direction - from the CPU to the memory. The number of



wires in the address bus determines the maximum amount of
memory that can be accessed by the CPU.

> Data Bus: This type of bus is used to transfer data between the
components of the computer system, such as the CPU and the
memory. The data bus is a bidirectional bus, meaning that data
can be transferred in both directions - from the CPU to the
memory and from the memory to the CPU. The number of
wires in the data bus determines the maximum amount of data
that can be transferred between the CPU and the memory.

» Control Bus: This type of bus is used to transfer control signals
between the components of the computer system, such as the
CPU and the memory. The control bus is a bidirectional bus,
meaning that control signals can be transferred in both
directions - from the CPU to the memory and from the memory
to the CPU. Control signals can include signals to indicate
whether the data being transferred is a read or a write
operation, signals to indicate the timing of the data transfer,
and signals to indicate errors in the data transfer.

Q. limitations of single bus system to connected different
devices. what does the width of data and address bus
represent in a system? why is bus hierarchy required?



Here are the limitations of a single bus system:

» Single bus systems have limited bandwidth, and as more
devices are connected, the available bandwidth per device
decreases. This leads to slower data transfer rates and reduced
system performance.

» When two or more devices try to access the bus simultaneously,
leading to delays and increased system complexity.

> Single bus systems have limited scalability, and as the number
of devices connected to the bus increases, the system becomes
more complex and difficult to manage.

» As the number of devices connected to the bus increases. This
can result in data corruption, errors, and system instability.

» Security risks are higher in single bus systems, as all devices
have access to the same bus, making it more difficult to
implement security measures to protect the system from
external threats.

The width of the data bus determines the amount of data that can
be transferred between the components of the system in a single
cycle. For example, a 32-bit data bus can transfer 32 bits (or 4
bytes) of data at a time. The wider the data bus, the faster the data
can be transferred between components.

The width of the address bus determines the maximum amount of
memory that can be addressed by the system. For example, a 32-
bit address bus can address up to 4GB of memory. The wider the
address bus, the larger the amount of memory that can be
addressed by the system.

Bus hierarchy is required in computer systems to improve system
performance and scalability. In a complex computer system with
multiple components, a single bus can become a bottleneck,
leading to slow data transfer rates and reduced system



performance. Bus hierarchy helps to address this issue by dividing
the system into multiple buses at different levels.

Q. Explain different elements of bus design.

The design of a bus system in a computer architecture involves
several elements that must be considered to ensure efficient and
reliable communication between different components. Here are
some of the key elements of bus design:

> Bus Topology: The bus topology refers to the physical
arrangement of the bus, including the wiring, connectors, and
other components. The choice of topology depends on factors
such as the number of devices to be connected, the distance
between devices, and the bandwidth required.

> Bus Protocol: The bus protocol refers to the rules and
procedures that govern how devices communicate over the bus.
The protocol specifies the format of data transfer, the timing of
signals, error handling, and other aspects of communication.
Common bus protocols include PCI, USB, and Ethernet.

> Bus Width: The bus width refers to the number of data lines on
the bus, which determines how much data can be transferred at
a time. A wider bus allows for faster data transfer, but also
requires more power and more complex hardware.

> Bus Speed: The bus speed refers to the frequency at which
data is transferred over the bus, measured in megahertz (MHz)
or gigahertz (GHz). A higher bus speed allows for faster data
transfer, but also requires more power and can cause signal
integrity issues.

> Bus Arbitration: Bus arbitration refers to the process of
resolving conflicts when multiple devices try to access the bus
simultaneously.



Q. Explain different types of bus arbitration and compare them

Bus arbitration refers to the process of resolving conflicts when
multiple devices try to access the bus simultaneously

> Centralized Arbitration: Centralized arbitration involves a
central arbiter that controls access to the bus. In this type of
arbitration, all devices must request permission from the arbiter
before accessing the bus. The arbiter decides which device has
priority and grants access to the bus accordingly. The
advantage of centralized arbitration is that it is simple and easy
to implement. However, it can also be a bottleneck, as all
requests must go through a single point of control.

> Distributed Arbitration: Distributed arbitration allows each
device to make its own decision about when to access the bus.
In this type of arbitration, each device listens for the bus to
become available and then attempts to access it. If multiple
devices attempt to access the bus simultaneously, a collision
occurs, and the devices must wait for a random amount of time
before trying again. The advantage of distributed arbitration is
that it can be more efficient than centralized arbitration, as
devices can access the bus more quickly. However, it can also
be more complex to implement and may require additional
hardware.

> Priority Arbitration: Priority arbitration assigns a priority level
to each device on the bus. The device with the highest priority
is granted access to the bus first, followed by the device with
the next-highest priority, and so on. If two devices have the
same priority level, a collision occurs, and the devices must wait
for a random amount of time before trying again. The
advantage of priority arbitration is that it can be very efficient,
as high-priority devices are granted access to the bus quickly.
However, it can also be complex to implement and may require
additional hardware.



> Round-Robin Arbitration: Round-robin arbitration allocates
bus access to each device in turn. Each device is granted access
to the bus for a fixed amount of time, after which the next
device in line is granted access. The advantage of round-robin
arbitration is that it is fair, as each device is given equal access
to the bus. However, it can also be inefficient, as some devices
may not require access to the bus as frequently as others.

Q. What is PCI?

PCl (Peripheral Component Interconnect) is a type of computer bus
used for connecting peripheral devices to a computer's
motherboard. The PCl bus is a standard interface that provides
high-speed data transfer between devices, allowing them to
communicate with each other and with the CPU.



CHAPTER 2 (18 Marks)

Central Processing Unit

Q. Design a 2-Bit ALU that can perform , AND, OR, X-OR and
NOT operations.

Instruction formats (Youtube)

Instruction formats are a way of representing the various parts of a
machine instruction in a computer's memory. They define the
structure of an instruction and specify how the various fields of the
instruction are encoded.

Address

» An Operation code field specifies the operation to be
performed such as add, subtract etc.


https://www.youtube.com/watch?v=u0Y5lbe8_vU

» An Address field specifies a memory address or a processor
register, where operand is stored.

» A Mode field that specifies the way the operand or the effective
address of the operand is determined.

Computers may have instructions of several different lengths
containing varying number of addresses. Following are the types of
instructions.

1. Three address Instruction

Instruction with three operands reference is called three address
instruction. Computers with three address instruction format can
use each address field to specify either a processor register or a
memory operand. It is also called general register organization.

- Destination Address | Source Address 1 Source Address 2

Three-address instruction format

To evaluate X = (A + B) * (C + D)

ADD R1, A, B RL<M[A] + M[B]
ADD R2,C,D R2<M[C] + M[D]
MOL X, RL, R&2 M[X]<R1#*RQ

It is assumed that processor has two registers, R1 and R2. The
symbol M[A] denotes the operand at memory address symbolized
by A.

» ADVANTAGE: It results in short programs when evaluating
arithmetic expressions.

> DISADVANTAGE: The instructions requires too many bits to
specify 3 addresses.



2. Two address Instruction

- Destination Address | Source Address

Two-address instruction format

Instruction with two operands reference is called two address
instruction. They are the most common in commercial computers.
Each address field may specify either a processor register or a
memory operand.

To evaluate X = (A + B) * (C + D)

MOV RL, A  RL<M[A]
ADD  R1L, B Rl <Rl + M[B]
MOV R2,C  R2<M[C]
ADD  R2, D R2<«<R2 + M[D]

MOL = R1,R2 = Bl <R1«R2
MOV X, RL  M[X]<R}

3. One address Instruction

Instruction with one operand reference is called one address
instruction and use an implied accumulator (AC) register for all
data manipulation. All operations is done between accumulator
register and memory operand. It is called single accumulator
organization.

- Operand Address (S/D)

One-address instruction format




To evaluate X = (A + B) * (C + D)

LOAD
RDD
STORE
LOAD
RDD
MUL
STORE

AC < HM[A]
AC«AC + M[B]
M[T]<AC
AC<M[C]
AC«AC + M[D]
RAC«—AC=*M[T]
M[X]<AC

o R B B o e R

4. Zero address Instruction

Instruction without address field/operand is known as zero address
instruction. Also called stack based organization.

NopesEE

Zero-address instruction format

To evaluate X = (A + B) * (C + D). convert first to Post fix =
AB+CD+* (link for conversion)

PUSH i1
PUSH B
ADD

PUSH C
PUSH D
ADD

MUL

POP X
Question 2
Question 3
Question 4

Question 5

TOS <A
TOS <B

TOS<« (A + B)

TOS «C

TOS <D

TOS« (C + D)

TOS« (C+D)#* (A + B)
M[X] < TOS


https://www.youtube.com/watch?v=MxKBRgyO-94
https://www.youtube.com/watch?v=HzsSqoUuBRk
https://www.youtube.com/watch?v=pJDH9qvT3Ls
https://www.youtube.com/watch?v=yC_7xLPEwNs
https://www.youtube.com/watch?v=AKI-AiIC4jg

Addressing Modes ( Youtube )

Addressing modes refer to the different techniques used by
computers to interpret or modify the address field of an instruction
before accessing the operand.

These techniques are used to provide programming flexibility to
users, reduce the number of bits needed for addressing, and
enable the use of pointers, counters, indexing, and other functions.
There are various modes of addressing, including those that do not
require an address field at all.

In computer architecture, the effective address is the final
memory address used to access data in memory. It is calculated by
combining the base address with an offset, displacement, or index
value based on the addressing mode used. The effective address is
determined by the addressing mode of the instruction, and it is the
actual address of the operand used by the CPU to retrieve or store
data during program execution. It is an important concept as it
determines the location of data in memory.

1. Implied addressing mode

» Implied addressing mode is a simple addressing mode used in
computer programming where the instruction does not
explicitly specify the operand's memory address.

» The operand's address is instead implied by the instruction
opcode itself or the context in which the instruction is executed.

Eg:

» CLC - clears the carry flag in the processor's status register
» INX - increments the value of the X register by one

Instruction
Opcode



https://www.youtube.com/watch?v=_CH4cm5PhK8&list=PLAXUYU7PbJhiCuQ4GmgRwRRn13ujHBXSN&index=3

>

>

Advantage: no memory reference.

Disadvantage: limited operand

2. Immediate addressing mode

>

>

The operand value is directly included in the instruction itself,
typically as a constant.

The immediate addressing mode is used for operations that
require constant values, such as adding a fixed value to a

register or setting a flag.

Immediate addressing mode is often used for arithmetic and
logical operations

No computation required to calculate EA

E.c ADD 5 Instruction

|
e Add 5 to contents of accumulator iOpcode Operand

e 5 is operand

Eg : MVI B, 50H ( B <- 50H)

>

>

Advantage: no memory reference.

Disadvantage: limited operand

. Register direct addressing mode

In direct register addressing mode, the operand is stored
directly in the register specified in the instruction.

Register No is written in Instruction.



Regiada no
Offcode | oPwand | ~
e\ Instruction
e W ) | Opcode|  Register | Register
LD R 0o oo |
Oop)
»  Operand

For example
» MOV R1, #10 - moves the constant value 10 into register R1

» ADD R1, R2 - adds the contents of register R2 to the contents
of register R1 and stores the result in R1

» SUB R1, #5 - subtracts the constant value 5 from the contents
of register R1 and stores the result in R1

Advantage: no memory reference.
Disadvantage: limited address space
4. Register Indirect addressing mode

> In indirect register addressing mode, the memory address of
the operand is stored in the register specified in the instruction.

» Register indirect addressing mode is useful for accessing data
in memory without knowing the actual memory address of the
operand.



’ O tede Dddnex 1
-;________é\

) (P)¥—f ﬂooiﬁ
”‘&H[(a] e

,,(Ql) '
| "“"’“"[ée J

Instruction
| Opcode|  Register | Register

Memory

—  Operand

= (R1)

> LDRR1, [R2] - loads the contents of the memory address stored
in register R2 into register R1

» STR R1, [R2] - stores the contents of register R1 at the memory
address stored in register R2

» ADD R1, [R2] - adds the contents of the memory address stored
in register R2 to the contents of register R1 and stores the
result in R1

Advantage: Large address space.
Disadvantage: Extra memory reference



5. Auto increment or decrement addressing mode

» This is similar to register indirect mode except that the register
is incremented or decremented after (or before) its value is

used to access memory.

» When the address stored in the registers refers to a table of
data in memory, it is necessary to increment or decrement the

registers after every access to the table.

> This can be achieved by using the increment or decrement
instruction. In some computers it is automatically accessed.

i

AC

6. Direct Addressing Mode

» Actual address is given in the instruction

» Use to access variables

| e L
! Yoo

Jeo 9] 202 20y . - -

R (Rl)'f‘
< h[('g !)]



Instruction
Opcode Address Memory

—  Operand

Effective Address (EA) = A
For example :

LDA 4000H - loads the contents of memory location 4000H into
the accumulator.

ADD 4001H - adds the contents of memory location 4001H to the
accumulator

Advantage: Simple.
Disadvantage: limited address field

7. Indirect Addressing Mode

» The address of the memory location to be accessed is not
specified directly, but rather indirectly through a register or
memory location that holds the address.

» Used to implement pointers and passing parameters.

Of okt ' o hos 1
B praig :

Joec™]




Instruction
Opcode Address Memory

Operand j

EA = (X)

Eg:

MOV AX, [BX] - This instruction moves the contents of the memory
location whose address is stored in the BX register into the AX
register. Here, BX acts as a pointer to the memory location that

contains the data.

Advantage: Flexibility.
Disadvantage: Complexity

8. Relative Addressing Mode
» Used for program control instructions like branch and jump

QQQ&{NQ ﬁﬁ'dha},{mql F-’Iodeh
> Efechve ﬂdd;u,(: PC+ olfset

£ 49
Seo| BR 5%
Col
o _S-olp_—__—__
‘Df’ S [———
|




We give offset in address and when we give 50 in it the PC is 500
and the data should be fetched from 550 because and program
shoud branch to BR 550 but PC will increase to 501(since PC always
gives address of next instruction) and if we give 50 off set then
after 50 displacement PC - 551 which is not 550 which we need so
offset is give 1 less that is 49 to reach 550 and fetch data.

The major advantage of relative addressing mode is that it allows
programs to access memory locations without having to know
their absolute addresses, making the programs more portable and
easier to write.

The major disadvantage of relative addressing mode is that it is
limited to accessing memory locations that are located at a fixed
distance from the current instruction, so it cannot be used to
access memory locations that are farther away.

9. Indexed Addressing Mode

\
| | I
Indewea  Bdwesimg Mode

= e 4o accesS o implemant  05AY éﬁ"f’i“‘wﬁ
- Mwkiple Q@j.‘gieh& Hequined o imp e mewt

- Q»U Worent Can be QCceHEd  without :;havﬁwj &t

LI [-[] B

too et <




» Here fix the base address of the array say 100
» Here EA=BA+IR

> If we want to access 4™ element of array then set Index register
to 4 the EA = 100+4 = 104 for 6 element set IR= 6 and so on.

The major advantage of indexed addressing mode is that it allows
for more flexible memory access than direct or immediate
addressing modes, as it can be used to access memory locations
that are located at a variable distance from the base address stored
in the register.

The major disadvantage of indexed addressing mode is that it can
be slower than direct addressing mode due to the additional time
required to compute the address by adding the offset or index
value to the base address stored in the register.

Q. Explain different types of data manipulation instructions
with example.

Data manipulation instructions are used in computer architecture
and programming to perform various operations on data stored in
memory or registers. Here are some different types of data
manipulation instructions along with examples:

1.Arithmetic Instructions: Arithmetic instructions are used to
perform arithmetic operations on data. Examples include:

» ADD AX, BX ; Add the contents of the BX register to the AX
register

» SUB CX, DX ; Subtract the contents of the DX register from the
CX register



>

MUL BX ; Multiply the contents of the AX register by the BX
register

2.Logical Instructions: Logical instructions are used to perform
logical operations on data, such as AND, OR, and NOT. Examples
include:

>

AND AX, BX; Perform a bitwise AND operation on the contents
of the AX and BX registers

OR CX, DX ; Perform a bitwise OR operation on the contents of
the CX and DX registers

NOT BX ; Perform a bitwise NOT operation on the contents of
the BX register

3.Shift and Rotate Instructions: Shift and rotate instructions are
used to shift or rotate the bits of data to the left or right. Examples
include:

>

SHL AX, 2 ; Shift the bits in the AX register two positions to the
left

SHR BX, 3 ; Shift the bits in the BX register three positions to
the right

RCL CX, 1; Rotate the bits in the CX register one position to the
left through the carry flag

4.Data Transfer Instructions: Data transfer instructions are used
to transfer data between memory and registers, or between
registers. Examples include:

>

MOV AX, BX ; Move the contents of the BX register to the AX
register



MOV [SI], AX ; Move the contents of the AX register to the
memory location specified by the Sl register

XCHG BX, CX ; Exchange the contents of the BX and CX
registers

Q. Explain the component of CPU.

The CPU, or Central Processing Unit, is the "brain" of a computer
system, responsible for executing instructions and performing
calculations. It consists of several components, including:

>

Control Unit (CU): The control unit is responsible for
managing the operation of the CPU, fetching instructions from
memory, decoding them, and executing them. It controls the
flow of data within the CPU and between the CPU and other
components of the computer system.

Arithmetic Logic Unit (ALU): The ALU is responsible for
performing arithmetic and logical operations on data. It can
perform operations such as addition, subtraction, multiplication,
division, and comparison.

Registers: Registers are small, high-speed storage locations
located within the CPU that hold data and instructions being
processed by the CPU. There are several types of registers,
including:

B Program Counter (PC): The program counter holds the
address of the next instruction to be executed.

B Instruction Register (IR): The instruction register holds the
current instruction being executed.

B Accumulator (ACC): The accumulator holds data being
processed by the ALU.



B General-Purpose Registers: General-purpose registers can
be used to hold data or addresses.

Cache: Cache is a small, high-speed memory located within the
CPU or on the CPU chip that stores frequently accessed data
and instructions. It is used to improve the performance of the
CPU by reducing the time it takes to access data from memory.

Bus Interface Unit (BIU): The bus interface unit is responsible
for communicating with other components of the computer
system through the system bus. It fetches data and instructions
from memory and writes data to memory.

Q. Write down the need for addressing modes.

>

Addressing modes allow for efficient and flexible memory
access by specifying how to access data and instructions stored
In memory.

Addressing modes are used to support program control flow,
such as branching and jumping to different locations in
memory.

Addressing modes provide flexibility and versatility in
performing data manipulation operations.

Addressing modes help to optimize code by allowing for
efficient memory access and minimizing the number of
instructions required to perform operations.

Addressing modes can be designed to work within the
limitations of the hardware, such as the number of registers,
memory size, or processor speed.



RISC Architecture

CISC Architecture

RISC stands for  Reduced
Instruction Set Computing.

CISC  stands for  Complex
Instruction Set Computing.

RISC processors have a small and
simple set of instructions.

CISC processors have a large and
complex set of instructions.

RISC architecture emphasizes
simpler instructions that can be
executed quickly.

CISC architecture emphasizes
complex instructions that can
perform multiple operations in
one instruction.

RISC processors typically have a
large number of registers for
storing data.

CISC processors typically have a
smaller number of registers, and
some operations are performed
directly on memory.

RISC processors rely heavily on
compilers to optimize code.

CISC processors rely on hardware
to optimize code.

RISC architecture is more suited
for applications that require high
performance and efficient use of
memory, such as embedded
systems and mobile devices.

CISC architecture is more suited
for applications that require
complex operations and large
amounts of memory, such as
database systems and scientific
computing.

Heavily Pipelined

Not/less Pipelined




CHAPTER 3 (10 MARKS)

CONTROL UNIT

Control Memory

Also known as "control store" or
"microcode memory"

Stores microcode, which provides
the control signals for the
processor to execute instructions

Non-volatile, meaning that its
contents are retained even when
power is turned off

Small in size compared to main
memory

Access time is very fast

Typically used in embedded
systems, where the microcode is
fixed and doesn't change

Main Memory

Also known as "RAM" or "primary
memory"

Stores data and instructions that are
currently being used by the
processor

Volatile, meaning that its contents
are lost when power is turned off

Much larger in size compared to
control memory

Access time is relatively slower
compared to control memory

Used in all types of computers,
where both data and instructions
need to be stored and retrieved

Control memory, also known as control store or microcode
memory, is a type of computer memory that stores
microcode/microprogram. Microcode is a low-level code that
provides the control signals for the processor to execute

instructions.



Hardwired Control Unit

Uses fixed logic gates and
combinational circuits to
generate control signals

Designed using a hardware
description language (HDL) and
implemented directly in
hardware

Faster execution since it does
not require memory access to
generate control signals

Difficult to modify or update
since changes require physical
changes to the hardware

Used in simple processors with a
limited instruction set

Lower cost since it requires less
memory and has simpler
implementation

Micro-Programmed Control Unit

Uses microcode to generate control
signals

Implemented using a control store,
which contains microcode

Slower execution compared to
hardwired control unit since it
requires memory access to fetch
microcode

Easily modifiable since changes can
be made to the microcode without
changing the hardware

Used in more complex processors
with a larger instruction set

Higher cost since it requires more
memory to store microcode and has
a more complex implementation

Microprogrammed control unit:

E Next Control
External
Input Address Address
generator Register i
.| (Sequencer)

Control Control Control
Memory Data Word
(ROM) ] Register

Next address information

Fig 3-1: Microprogrammed Control Organization



A micro-programmed control unit is a type of control unit that
uses a microprogram to control the operations of a computer.
Here's how it works:

When an instruction is fetched from memory, the micro-
programmed control unit uses the sequencer to generate a
sequence of microinstructions that define the operations to be
performed by the computer. The CAR holds the address of the next
microinstruction to be executed, which is fetched from the control
memory. The CDR holds the data required for the microinstruction
being executed, which is used by the computer to perform the
operation.

The control word is used to specify the microinstruction to be
executed, including the address of the next microinstruction and
any other control signals required for the operation. The micro-
programmed control unit then executes the microinstruction,
updating the CAR with the address of the next microinstruction to
be executed, and repeating the process until the instruction is
completed.

Hardwired Control Unit

Instruction register

Decoder

I, I I:
_T]_‘.
e
Clock Timing Tz Control *
} generator . unit *  Flags
_.TM_;.. —

-
-~
-~



A hardwired control unit is a component of a computer's central
processing unit (CPU) responsible for managing the execution of
instructions. It typically contains the following components:

» Timing generator: This component generates timing signals
that synchronize the operations of the CPU's different
components, such as the control unit, arithmetic logic unit
(ALU), and memory unit.

» Control unit (CU): The CU is responsible for fetching
instructions from memory, decoding them, and then executing
them. It uses the timing signals generated by the timing
generator to coordinate its operations with those of other
components.

> Decoder: The decoder is responsible for decoding the
instructions fetched by the CU. It translates the instruction into
a series of control signals that are sent to other components of
the CPU, such as the ALU and memory unit.

> Instruction register (IR): The IR is a small memory unit that
temporarily stores the instruction being executed by the CPU. It
is used by the CU to decode the instruction.

> Flags: Flags are special registers that contain the status of the
CPU. They are used by the CPU to indicate whether certain
conditions have been met, such as whether an arithmetic
operation resulted in a zero value or whether an instruction
caused an overflow.

In summary, a hardwired control unit uses a timing generator to
coordinate the operations of the CPU's different components, a CU
to fetch, decode, and execute instructions, a decoder to translate
instructions into control signals, an IR to temporarily store
instructions, and flags to indicate the status of the CPU.



Microprogram Sequencer

Q. Describe how address of control memory is selected.
Q. How address of micro instruction is generated by next
address generator in control unit?

Explain with suitable diagram.

Extemal
{MA.P]L
+ v ¥
T gt 3210
"L, Logic "5 MUXI
I—h- 1 S
| :: MLUIX2 Tt ¥ [ncremen
o
.E_." &lﬁ:[ f‘ =T b ‘:\-."I.H.

Control memaory
Micmops  CD HBE Al
| \ J

A microprogram sequencer is a crucial component of a
microprogrammed control unit responsible for selecting the next
address to be read from the control memory so that a
microinstruction can be fetched and executed.

It consists of several parts, including a control memory, a
subroutine register (SBR), two multiplexers, and an input logic
circuit.

The control memory stores microinstructions that are executed by
the control unit. The microprogram sequencer selects the address
of the next microinstruction to be executed by the control unit. The



subroutine register (SBR) holds the return address for subroutine
calls and returns.

The two multiplexers in the microprogram sequencer select an
address from four different sources. The first multiplexer selects an
address from one of the four sources and routes it to the Current
Address Register (CAR). The second multiplexer tests the value of
the selected status bit and applies the result to an input logic
circuit.

The output from the CAR provides the address for the control
memory. The contents of the CAR are incremented and applied to
one of the multiplexer's inputs and to the SBR. Although the block
diagram in the text shows a single SBR, a typical microprogram
sequencer will have a register stack about four to eight levels deep
to support push, pop, and stack pointer operations for subroutine
calls and returns.

The CD (Condition) field of the microinstruction selects one of the
status bits in the second multiplexer. The Test variable, which can
be either 1 or 0, together with the two bits from the Branch (BR)
field, goes to an input logic circuit to determine the type of
operation to be executed.

Overall, the microprogram sequencer operates by selecting the
address of the next microinstruction to be executed by the control
unit. It uses two multiplexers to select an address from four
different sources and test the value of the selected status bit. The
contents of the CAR are incremented and applied to one of the
multiplexer's inputs and to the SBR. The CD field of the
microinstruction selects one of the status bits in the second
multiplexer, and the Test variable, together with the two bits from
the BR field, goes to an input logic circuit to determine the type of
operation to be executed.



Q. What factors cause micro-programmed control unit to be
selected over hardwired control unit

» Micro-programmed control units are more flexible than
hardwired control units.

» Micro-programmed control units can be easier to design and
implement.

» Micro-programmed control units are easier to test and debug
than hardwired control units.

» Micro-programmed control units can be developed more
quickly and at a lower cost than hardwired control units
because they require less design and development effort.




CHAPTER 4 (10 MARKS)

Pipeline and Vector Processing

Q. What is pipeline? How performance of computer is
increased using pipelining? Explain with example.

Pipelining is a technique for improving the performance of
computer processors by dividing a complex task into smaller sub-
tasks and processing them concurrently. In a pipelined system, the
processing of a task is divided into a series of stages, and each
stage performs a specific operation on the task.

For example, consider a simple pipeline for processing a list of
numbers:

® |In the first stage, the numbers are read from memory and
loaded into a register.

® |n the second stage, the numbers are sorted.

® In the third stage, the sorted numbers are written back to
memory.

In a non-pipelined system, each of these stages would be
performed one after the other, which would take a long time to
complete. However, in a pipelined system, each stage can be
performed concurrently on a different set of data.

For example, while the first stage is reading the numbers from
memory, the second stage can be sorting the previously read
numbers, and the third stage can be writing the already sorted
numbers back to memory. This results in a significant improvement
in the processing speed and efficiency of the system.



Clock

Input

Fig 4-2: Four Segment Pipeline

The general structure of a four-segment pipeline is illustrated in
Fig. 4-2. We define a task as the total operation performed going
through all the segments in the pipeline.

Here IR (Instruction Registers i.e R1,R2..) are used to store the
outputs of each stage

For 4-Stage Pipelining:

® Instruction Fetch: In this stage, the processor fetches the
instruction from memory.

® Instruction Decode: In this stage, the processor decodes the
instruction and determines the operations to be performed.

® Execute: In this stage, the processor performs the required
operations on the data, such as arithmetic or logical operations.

® Write-Back: In this stage, the results of the execute stage are
written back to memory or the processor's registers.

The behavior of a pipeline can be illustrated with a space-time
diagram. It shows the segment utilization as a function of time.

For a 5-stage pipelining architecture, the five stages are typically:

® Instruction Fetch (IF): The processor fetches the instruction
from memory.



® Instruction Decode (ID): The processor decodes the
instruction and determines the operations to be performed.

® Execute (EX): The processor performs the required operations
on the data, such as arithmetic or logical operations.

® Memory Access (MEM): The processor accesses memory, if
required by the instruction.

® Write-Back (WB): The results of the execute stage are written
back to memory or the processor's registers.

(6 stage pipelining ma write back pachi commit huncha)

—
,___- E-‘ \I h-
A T PR T <

) ER R [Tq {Zs (28 (3 3e | | | F1e ™
Sy 2 2y |3, (o (s laehs ;) | | B
S <3 L3 (1 o [2efac|za|m] | Lo

s4 | I3y (313 | 2402 |2 |33] 2] Tmem

= I EN SN ENES 3¢ V8 -

L e T2 31 ugse6p3ve revkuyun

"
-‘_’—_——ﬁ‘_g——m PO
s

Thiema N
D

£ig’. spue Hma  dlagram

HP 28 9 rauction O _.-]_"\j

PO non pieding 1T ome Saye veauvs | @ clede cyda
J/f‘w\\ T Skuqg  eauives T 4o o\ ehp .
= 9 "jr\sk‘md'.ug L Y = U0 CE

[
)
Todel  Hne
Clode cy\w \

Move A1 % o febch stage \h Seai  and b
clodg cAe 2. T s ot C{QLC.J-M Staae  and at e
Qema e Ty oy gk foroned Bacage  Stoge |
« Aver .
or @y Cc3
Simplavly Ty ~paches 331 Ay vealwr ) and 13 !
o b 9 ok cc .

A @S (2 ¥ tompaled .
_brewse ob Docc on inglvucd gye Compleved .




Youtube link

l E—
l
s
| !
— li‘)M‘_ stagt n oy MO Tnsvuciony
b < 4 fot (4 navuchin 4 Comploto -;,(\\ﬂ[) CC 3
- PV noy vt i cmdde = @R (hd) g
So_
FoViImwal - < ¥ Q‘\—\) P
j 125 BNV = piptig 910tV ining W weuld Yequive 40ctc +o
-,1 cowmplet®  but  osing  pletting Y Yequivs 1Lce so
! Pip\ining ‘M OvEagos  peY By manct - ‘
1 2 3 4 5 6 7 8 9
*Clock cycles
Segment: 1 7 % el 7 7 #
2 |l | |l mn| %=
’ n| R | B AR T
i 71 7 73 7 7s 7s

Fig: 4-stage pipelining with 6 instructions

Limitations of Pipelining

» Not so easy process.

» Advance technology so cannot possible to implement in all
computers.

> If instructions are not designed properly then may have adverse
effect.

> If the depth of pipelining increases, no guarantee to increase
the performance i.e. may hazardous.


https://www.youtube.com/watch?v=R9s34-lnd9k&list=PLAXUYU7PbJhj8Cz_LZkZpEYSu5ITZakBo&index=4

» An unbalanced length of pipe stages reduces speedup.

Arithmetic Pipeline (youtube link)

An arithmetic pipeline is a type of processor pipeline that is
specifically designed to perform arithmetic and mathematical
operations on data. It is a common technique used in processors
for handling mathematical operations more efficiently.

Pipeline arithmetic units are usually found in very high speed
computers. They are used to implement floating-point operations,
multiplication of fixed-point numbers, and similar computations
encountered in scientific problems. An arithmetic pipeline usually
requires two or more operands to enter the pipeline at same time
and the memory can be partitioned into a number of modules
connected to a common memory address and data buses.

For example:

Floating point adder:

Inputs:

X=A*10a

Y=B*10b where, A & B: Mantissa and a and b: Exponents

The floating point addition and subtraction can be performed in
four segments, the sub operations that are performed in the four
segments are:

1. Compare the exponents

2. Align the mantissas

3. Add or Subtract the mantissas
4. Normalize the result


https://www.youtube.com/watch?v=j61s-sB9uUk

Exponent ;
P Mantissa

A B
ﬁ

i

Compare exponent by
subtraction

i

Chose exponent Align mantissa

Compare exponent by
subtraction

—

Adjust exponent Adjust exponent

i

Let us take: X=09505*10”~3 and Y=0.8100*10/2

t

1

1. Compare exponents by subtraction

3-2=+1 (here + says that you should adjust 2" exponent part by
1 place if -1 then adjust 1** exponent for 1 place)

Larger exponent is choose as the exponents of the result

2. Align mantissas
X=0.9505*10"3
0.08100*1073

3. Add mantissas
Z=1.0315*10"3

4. Normalize result
Z=0.10315*1074



Gmpae |
Caoeat] exPI:*nwﬁ Differince
by Sublraction [ 3~ 2

i

R

: l N/
egment 2 |Choose expoment| Algn Marrhssa
3 0’9505 ] 0:0810
(R

SImme 3 Add or Subhact
Mmonrhssa

Fig : 4 stage arithmetic pipelining

Instruction Pipelining (Youtube Link)

Pipeline processing can occur not only in the data stream but in
the instruction as well.

In the most general case, the computer needs to process each
instruction with the following sequence of steps.


https://www.youtube.com/watch?v=_cNrYUUDaq8

® Fetch the instruction from memory.
® Decode the instruction.

® (Calculate the effective address.

® Fetch the operands from memory.
® Execute the instruction.

® Store the result in the proper place.

There are certain difficulties that will prevent the instruction
pipeline from operating at its maximum rate.

® Different segments may take different times to operate on the
incoming information.

® Some segments are skipped for certain operations.

® Two or more segments may require memory access at the same
time, causing one segment to wait until another is finished with
the memory.

Example: Four-Segment Instruction Pipeline

Assume that:

® The decoding of the instruction can be combined with the
calculation of the effective address into one segment.

® The instruction execution and storing of the result can be
combined into one segment.



Fig 4-7 shows how the instruction cycle in the CPU can be

processed with a four-segment pipeline.

® Thus up to four suboperations in the instruction cycle can
overlap and up to four different instructions can be in progress
of being processed at the same time.

An instruction in the sequence may be causes a branch out of
normal sequence.

® [n that case the pending operations in the last two segments
are completed and all information stored in the instruction
buffer is deleted.

® Similarly, an interrupt request will cause the pipeline to empty
and start again from a new address value.

Segment 1:

Segment 2:

Segment 3:

Segment4:

yes

Fig 4-7: Four-segment CPU pipeline



e Fig. 9-8 shows the operation of the instruction pipeline.

siop: |4 | 23 |a|s]s]|2 |8 ]| 9]w]|iul2]n

1 | f| DAl Fo|Ex
Instruction: 2 FI DA | FO | EX
(Branch) 3 F| oAl Fo| Ex

4| la|-]—|m|loa|lr|ex| [ [ |
5 —|—|=|m|oalr |&
6 A | DA |Fo | x|
7 | m [pa | Fo| Ex

Fig 4-8: Timing of Instruction Pipeline

o FI: the segment that fetches an instruction

o DA: the segment that decodes the instruction and calculate the
effective address

o FO: the segment that fetches the operand

o EX: the segment that executes the instruction

Q. Discuss in detail about data dependency problem that arises
in pipelining along with its solution.

Pipelining is a technique used in computer architecture to increase
the efficiency of processors by breaking down the execution of
instructions into smaller, overlapping stages. The concept of
pipelining is to divide a task into smaller sub-tasks and execute
them concurrently to increase the overall throughput of the system.
However, one of the main challenges in pipelining is the data
dependency problem.

Data dependency refers to the relationship between two
instructions in a program, where one instruction requires the result
of another instruction to complete its execution. In pipelining, data
dependency can cause stalls in the pipeline, resulting in a decrease
in overall performance.

There are three types of data dependencies:



RAW (Read After Write) dependency: Occurs when a later
instruction reads data from a register or memory location that
has been written by an earlier instruction, before the earlier
instruction has completed its execution.

WAR (Write After Read) dependency: Occurs when a later
instruction writes data to a register or memory location before
an earlier instruction has finished reading from the same
register or memory location.

WAW (Write After Write) dependency: Occurs when two
Instructions write to the same register or memory location, and
the order of execution is not preserved.

To solve the data dependency problem in pipelining, there are
several techniques used:

>

Forwarding: Also known as data forwarding or bypassing. This
technique allows the results of an instruction to be forwarded
to another instruction that needs the data before the result is
written to a register. This technique eliminates the need for a
stall in the pipeline.

Stalling: Also known as bubble or NOP insertion. This
technique inserts a "no-operation" instruction (NOP) into the
pipeline to allow an earlier instruction to complete before a
later instruction can proceed. This technique, however,
decreases the overall performance of the system.

Compiler Techniques: Compiler techniques can be used to
reorder instructions to eliminate data dependencies. The
compiler can also use register renaming to create new registers
that are not shared between instructions.

Hardware Techniques: Hardware techniques can be used to
increase the number of registers or add additional functional
units to the processor to reduce data dependencies.



Q. Describe Flynn's classification

Flynn's classification is a taxonomy used in computer architecture
to categorize the structure and behavior of computer systems
based on the number of instruction streams and data streams that
can be processed simultaneously.

There are four classifications in Flynn's taxonomy:

>

Single Instruction Single Data (SISD): This is the simplest and
most common classification of computer architecture. In an
SISD system, there is only one instruction stream and one data
stream. The processor executes one instruction at a time and
operates on one data item at a time.

Single Instruction Multiple Data (SIMD): In a SIMD system,
there is a single instruction stream that is broadcast to multiple
processing units, each of which operates on different data
items. This architecture is often used in parallel processing for
scientific computing or multimedia applications.

Multiple Instruction Single Data (MISD): In a MISD system,
there are multiple instruction streams that operate on a single
data stream. This architecture is less common and is mainly
used in fault-tolerant systems or in highly specialized
applications such as medical imaging.

Multiple Instruction Multiple Data (MIMD): In a MIMD
system, there are multiple instruction streams and multiple data
streams. Each processing unit operates independently and can
execute different instructions on different data items
concurrently. This architecture is used in parallel processing for
a wide range of applications, including scientific computing,
data analytics, and artificial intelligence.



Q. Discuss about parallel processing? How parallel processing
can be achieved in pipelining, explain it with time-space
diagram for four segments pipeline having six tasks.

Parallel processing is a technique in computer architecture where
multiple processors or processing units work together to perform a
task. This technique can significantly improve the speed and
performance of computer systems by dividing a large task into
smaller sub-tasks that can be executed concurrently.

Parallel processing can be achieved in several ways, such as
pipelining, multi-core processors, multi-processor systems, and
distributed computing.

Pipelining is a form of parallel processing that involves breaking
down the execution of a task into smaller, overlapping stages. Each
stage of the pipeline operates on a different subset of data or
instructions, and the outputs of each stage are passed to the next
stage as soon as they are available. This overlapping of stages can
result in significant performance improvements.

(4 stage pipelining with 6 task is explained above in the note pg 4)

Hazards (Youtube link)

Hazards are the situations, which prevent the next instruction in
the instruction stream from executing during the desired clock
cycle. They reduce the performance gained from the ideal speedup

by pipelining.
Data hazards

Data hazards are a type of hazard that can occur in pipelining
when an instruction depends on the result of a previous instruction
that has not yet completed execution. In other words, the data that


https://www.youtube.com/watch?v=srlgaJgaxRE&list=PLAXUYU7PbJhj8Cz_LZkZpEYSu5ITZakBo&index=6

the second instruction needs is not yet available because the first
instruction has not yet finished writing it to a register or memory.

This can cause the pipeline to stall or result in incorrect output. For
example, if the second instruction needs the result of an addition
operation performed by the first instruction, and the pipeline does
not handle this dependency properly, the second instruction might
start executing before the result is available. As a result, the second
instruction might use the old value in the register, leading to
incorrect output.

To avoid data hazards:

» Forwarding/Bypassing: In this technique, the data is passed
directly from the output of the instruction that produces it to
the input of the instruction that needs it. This allows the second
instruction to use the updated data without waiting for the data
to be written to the register or memory.

> Register Renaming: This technique involves renaming
registers to eliminate data dependencies. By assigning a new
name to a register, instructions can be reordered and
scheduled without causing data hazards.

» Compiler Techniques: By analyzing the code at compile time,
the compiler can rearrange instructions or insert "dummy"
instructions to break data dependencies and avoid data hazards.




Here OF for I1 is done in cc2 and we are trying to use OF value in
cc3 for 12. The OF value for 11 is not stored in regsiter as it is not
completed execution. It will complete exection afte WB. Hence we
are not using updated data which causes data harzard.

Structural Hazards

Structural hazard occur when multiple instructions needs same
resources. These resources may include processor registers,
functional units, or memory modules.

For example, consider a CPU that has a single adder unit and two
instructions that require the use of the adder unit. If the two
instructions are scheduled to execute at the same time, a structural
hazard occurs because the adder unit can only be used by one
instruction at a time. In this case, one of the instructions will have
to wait for the adder unit to become available, which can result in a
delay in the execution of the program.

Shuctwal Hazond
- Whtn rnuu.p(?( i Huctions Htedﬁ Aome prelounce.

BRSNS s [ 7 ¢
_I' FFIID/FX/ LR

T LIF/ Lo /Fx HEM[wpg

B In /Fx /HFH G




Here at cc4 for 14 we are accessing memory for IF and at the same
time for I1 we are accessing the memory so it creates structural
hazard because we are accessing the same memory.

There are several solutions to structural hazards in computer
architecture. Some of the common techniques used to overcome
structural hazards include:

> Resource Duplication: This technique involves duplicating
hardware resources such as functional units or registers to
eliminate the structural hazard. For example, if a CPU has only
one adder unit and multiple instructions require the use of the
adder unit, the CPU can be designed with multiple adder units
to allow the instructions to execute concurrently.

> Resource Partitioning: Resource partitioning involves dividing
the available hardware resources into smaller units and
assigning each unit to a specific set of instructions. This
technique allows multiple instructions to use the same resource
without interfering with one another. For example, a CPU can
be partitioned into multiple processing units, each with its own
set of registers and functional units.

> Delayed Execution: Delayed execution involves delaying the
execution of an instruction until the required hardware
resources become available. This technique can be used when
the structural hazard cannot be eliminated by duplicating or
partitioning the resources.

> Compiler Optimization: Compiler optimization involves
optimizing the code generated by the compiler to reduce the
number of instructions that require the same hardware
resources. This technique can be used to minimize the
occurrence of structural hazards in the code.



Control Hazards

All instruction who change the program counter leads to control
hazards.

Control hazards arise when instructions are executed out of order,
and a conditional branch instruction is encountered. If the branch
condition is not yet known, the processor has to wait for the
condition to be resolved before it can determine the next
instruction to be executed. This delay in determining the next
instruction can lead to performance degradation and reduce the
overall efficiency of the CPU.

oo,

Here we find we have to go to 2000 after ID of 12 and after WB of
12 we go to 2000 address due to brancing instruction so we have
to flush 13,14,I5 instructions which hampers performance.

There are several techniques used to mitigate control hazards,
including:



» Branch Prediction: Branch prediction is a technique that
predicts the outcome of a conditional branch instruction before
it is executed, based on the behavior of previous executions of
the same instruction. The predicted outcome is used to
speculatively execute the instructions following the branch
instruction. If the prediction is correct, the speculatively
executed instructions are retained, and if the prediction is
incorrect, they are discarded.

> Delayed Branch: A delayed branch involves adding one or
more instructions between the branch instruction and the
target instruction. This technique allows the processor to
execute instructions following the branch instruction while
waiting for the branch condition to be resolved.

> Branch Target Buffer: A branch target buffer is a cache that
stores the target address of recently executed branch
instructions. When a branch instruction is encountered, the
branch target buffer is searched for the target address. If the
address is found, the processor can directly jump to the target
address, reducing the delay in determining the next instruction.

> Speculative Execution: Speculative execution is a technique
that allows the processor to execute instructions ahead of the
current program flow, based on a predicted outcome of a
conditional branch instruction. The instructions are executed
speculatively, and if the predicted outcome is incorrect, the
speculatively executed instructions are discarded.

Q. What is vector processing?

Vector processing is a type of computer architecture that allows a
single instruction to operate on multiple data elements
simultaneously. In other words, it enables a processor to perform
the same operation on multiple pieces of data at the same time, by
grouping the data into vectors or arrays.



Chapter 5

Alternate Method of Unsigned Binary Multiplication
Start

*.

X € Multiplicand, Y € Multiplier
Sum € 0, Count € No. of bits of Y

No Yes

Sum € Sum + X

‘..J
Y

Left Shift X, Right
> Shift Y -
Count €< Count - 1
|
Y

Is

Count=0
?

No

Yes

Stop Result in Sum
Fig: Unsigned Binary Multiplication Alternate method

Example: Multiply 7 X 6

Sum X Y Count Remarks
000000 000111 | lu 3 Initialization
000000 001110 Dlﬂ 2 Left shift X, Right Shift Y
001110 | 011100 00f 1 Sum € Sum + X,
Left shift X, Right Shift Y
101010 111000 000 0 Sum € Sum + X,
Left shift X, Right Shift Y

Result=101010=2°+2*+2'=42



Signed Multiplication (Booth Algorithm) - 2’s Complement
Multiplication

Normal vs arithmetic shift right




(4 bits register - 4 cycles how many bits that many cycles.)




orithm with Solved Example in Hindi | part 2| COA Lectures




Booth's Algorithm with Solved Example in Hindi | part 2] COA Lectures







:-:g};fﬁfomhlq- DIVISION .

(PARRT-01)

. left awift
o 'Smb‘f-rad'; Oh

o 1 cn-rj tovtkrol b+ (tu‘nﬁ NDTaa'Fl) 5

Quotient « §
"" AC < O | Rewainder «Ac.
M 4 divisor
§ & dividend

uo-.m‘l' —iv)
_,L

Shif+ ettt
rC, ¢, &

i
_ AC & AC-™M




2 pC
© poo ©0
- . — —
e
\
-
"’

aforw division of Hae

o LLowIIViG viuvib e v S AL [ vg
"a’LS.]‘D-r\vxq A\ 1810w
& ™
R i = AC = O =0
D-‘\"Ocn‘- - - - 2 —% I ‘FV:—;
D\’ CON = T2 \
™ D
ri — DO O x
M < (cOo1) ), — YA — 1\ \ ©BO
= iy ,
-
W = G i c‘__,,_—_——P]‘ s

S

Tl
ool 0O

as\t
000010
-~ ¢,ACE
50) :3" Ce LM T IR
|




o1 00T

D\OOD
o

Remainder = CAC o combo not AC only






0COo®0 000 | (RS UTVE

hC Q

00 DD on | 3

e\ AR
L——a—ﬁw/"’l

Soon)lolon]

— o T & wp eV

R « (000 0'0)1'2 (20

g «— (o !°0) o o

oo = \i
() = () = (& !m
X “:—'(ﬁ)w




TShift lef+
ALY

Ate AL+M

Positive c ko vaue 0 negative c ko value 1




R = (0000,

g = (co1r),

Qu.o\'\uvé' ‘-'-'-K:"')u
P\WDJ VdJ-N- ™~ \‘9 (-




LILILLE LIIC HIIUDL SIEILIALIL UL 1D DIVTLACLL,

Example:

Let us take: X=09504*10° and Y=0.8200*10°

5. Compare exponents by subtraction

3-2=1

Larger exponent is choose as the exponents of the result

6. Align mantissas
X=0.9504*10°
0.08200%10°

Add mantissas

7Z=1.0324*10°

Adjust X such that:
Ez_ = Ex = EY

Adjust the Mantissa
Mz = My + My

l

Form the floating
point number
= MZ * 2EZ

Yes

No

Ze N

Z&« X

Adjust Y such that:
EZ = EX =. EY
e

Post Normalize

Stop ==



Floating Point Multiplication

The multiplication can be subdivided into 4 parts.
1. Check for zeroes.

2. Add the exponents.

3. Multiply mantissa.

4. Normalize the product.

MULTIPLY

Add
Exponents

Report
Overflow

Report
Underflow

Multiply
Significands

Normalize

RETURN

Example:
X =0.101*%28
Y =0.1001*27
As we know, Z=X * Y= (Mx * My)*2E+EY)
Z =(0.101*0.1001)*2®?
=0.0101101*2°
=0.101101*%2° (Normalized result)



Floating Point Division

The division algorithm can be subdivided into 5 parts
1. Check for zeroes.

2. Initial registers and evaluates the sign.

3. Align the dividend.

4. Subtract the exponent.

5. Divide the mantissa.

DIVIDE

Subtract
Exponents

Add Bias

Report
Overflow

Report
Underflow

RETURN

Example:
X =0.101*2% and Y =0.1001%2"°

As we know, Z=X / Y= (Mx / My)2"™*)
Mx / My = (0.101/0.1001)=1.00011
Ex - Ey = 8+3=11

Now, Z = 1.00011#2"" (Normalized result)






CHAPTER 6 (8 Marks)
MEMORY

Memory is a critical component of a microcomputer system, which
stores binary instructions and data. It is where the computer holds
current programs and data in use. The main memory is the
memory unit that communicates directly with the CPU, while
auxiliary or secondary memory devices provide backup storage.

Characteristics of memory:

» Location: The location of memory refers to where it is
physically located in a computer system. There are two main
types of memory locations: internal and external.

® Internal memory: This is memory that is located inside the
computer system. Examples include RAM (Random Access
Memory) and Cache memory.

® External memory: This is memory that is located outside
the computer system. Examples include hard drives, CDs,
and flash drives.

» Capacity: The capacity of memory refers to the amount of data
it can hold. Different types of memory have different capacities.

® RAM: The capacity of RAM is measured in gigabytes (GB)
and typically ranges from 2 GB to 32 GB or more.

® Hard Drives: The capacity of hard drives is measured in
terabytes (TB) and typically ranges from 500 GB to 4 TB or
more.

» Unit of transfer: The unit of transfer refers to the amount of
data that can be read from or written to memory at one time.



® Cache memory: The unit of transfer for cache memory is
typically one cache line, which is usually 64 bytes.

® RAM: The unit of transfer for RAM is usually one word,
which is typically 8 bytes.

» Access method: The access method refers to how data is
retrieved from memory. There are two main access methods:
random access and sequential access.

® Random access: This allows data to be accessed in any order.
RAM is an example of random access memory.

® Sequential access: This requires data to be accessed in a
specific order. Magnetic tape is an example of sequential
access memory.

» Performance: The performance of memory refers to how
quickly data can be read from or written to it.

® Cache memory: This is the fastest type of memory, with
access times typically measured in nanoseconds (ns).

® RAM: This is slower than cache memory, with access times
typically measured in microseconds (us).

> Physical characteristics:

® Volatile memory is a type of memory that loses its stored
information when the power is turned off. RAM (Random
Access Memory) is a typical example of volatile memory.

® Non-volatile memory, on the other hand, retains its stored
information even when the power is turned off. Examples of
non-volatile memory include ROM (Read-Only Memory),
PROM (Programmable Read-Only Memory), EPROM



(Erasable Programmable Read-Only Memory), and EEPROM
(Electrically Erasable Programmable Read-Only Memory).

® Non-erasable memory is a type of memory that cannot be
modified or altered once it is programmed. ROM is an
example of non-erasable memory because its contents
cannot be changed after it has been manufactured

> Organisation:

® Organization refers to the physical arrangement of bits into
words or blocks.

® The choice of organization depends on factors such as
performance requirements, type of data being stored, and

cost constraints.

® Common memory organizations include byte-addressable,
word-addressable, and bit-addressable.

® |Interleaving can be used to divide memory into multiple
banks for simultaneous access, improving memory
bandwidth and reducing access latency.

Memory Hierarchy

[o naec

oD

PH\MB.” hice

&( m&\h'\} H&CC
S&mge
fomg

Tondy




Registers: These are the fastest and smallest storage locations
in a computer system, used to hold data that is currently being
processed by the CPU.

L1 Cache: This is a small amount of memory that is integrated
into the CPU chip and used to store data that is frequently
accessed by the CPU.

L2 Cache: This is a larger amount of memory that is located on
the CPU chip or on a separate chip and used to store data that
is frequently accessed but not as frequently as data stored in L1
cache.

Main memory (RAM): This is the primary system memory that
holds data and instructions that the CPU accesses frequently. It
is slower than cache memory but faster than secondary storage.

Disk Cache: This is a portion of RAM that is used to temporarily
store data that is being read from or written to a hard disk drive,
in order to improve performance.

Hard Disk Drive: This is a non-volatile storage device that
stores data on spinning magnetic disks. It provides large
storage capacity at a relatively low cost, but is slower than main
memory.

Optical Storage: This includes CD-ROMs, DVDs, and Blu-ray
discs. These are non-volatile storage devices that store data
using lasers to read and write information on a reflective
surface.

. Tape Storage: This is a non-volatile storage medium that uses
magnetic tape to store data. It is used for long-term storage
and archiving, but is very slow and has limited random access
capabilities.



Memory hierarchy refers to the way that computer systems
organize and manage different types of memory, from the smallest
and fastest registers to the largest and slowest secondary storage
devices.

The main reason for having a memory hierarchy is to balance the
conflicting requirements of speed, cost, and capacity. Different
types of memory have different trade-offs between these factors.
Registers, for example, are very fast but very small, while hard disks
are slower but have much larger capacity.

By organizing memory into a hierarchy, computer systems can take
advantage of the strengths of each type of memory while
minimizing the impact of its weaknesses. The highest levels of the
memory hierarchy (registers and cache memory) are used for
storing data that needs to be accessed frequently and quickly,
while the lower levels (main memory and secondary storage) are
used for storing data that is accessed less frequently or can
tolerate longer access times.

The use of a memory hierarchy is an important aspect of computer
architecture, as it enables systems to achieve high performance
while still being cost-effective and scalable.

SRAM DRAM

Retains data without power Needs power to retain data (volatile)
(non-volatile)

Faster access speed Slower access speed
Lower storage density Higher storage density
More expensive Less expensive

Used for cache memory, CPU  ||Used for main memory
registers, and small buffers




SRAM DRAM

Typically used in low-power, Typically used in desktops, laptops, and
battery-operated devices and |[servers

applications where high speed
is critical

Requires less power to operate ||[Requires more power to operate

Cache Organization/Operation

Caches are a type of high-speed memory that are used to improve
the performance of computer systems by temporarily storing
frequently accessed data or instructions. The basic idea behind
caching is to store a copy of data that is likely to be needed again
in the near future in a faster, more accessible location.

When a CPU requests data or instructions from memory, the cache
first checks if the requested data is already stored in the cache. If it



is, the cache returns the data directly to the CPU without accessing
the slower main memory. This is known as a cache hit. If the
requested data is not in the cache, then the cache must fetch it
from main memory and store it in the cache for future requests.
This is known as a cache miss.

Caches are designed to be small enough to fit on the same chip as
the CPU, but large enough to hold a significant amount of
frequently accessed data. The cache is organized into blocks or
lines, each of which contains a fixed amount of data. When a block
of data is loaded into the cache, it is assigned a tag that identifies
its location in main memory. When the CPU requests data, the
cache checks the tags of each block to determine if the requested
data is already in the cache. If it is, the cache returns the data
directly to the CPU. If it is not, the cache must load the required
block from main memory into the cache, and then return the data
to the CPU.

Overall, caching is an effective way to reduce the average memory
access time and improve system performance, as long as the cache
is well-designed and properly managed.

Elements of Cache Design

» Cache size: The cache must be large enough to store a
significant amount of frequently accessed data, but not so large
that it becomes too expensive or takes up too much space on
the chip.

» Mapping function: The mapping function determines how
cache lines are mapped to specific locations in the main
memory. There are several different mapping functions,
including direct mapping, set-associative mapping, and fully
associative mapping.

> Replacement policy/Algorithms: When the cache is full and a
new block of data needs to be loaded, the replacement policy



determines which block should be evicted from the cache to
make room for the new block. Common replacement policies
include LRU (Least Recently Used), LFU (Least Frequently Used),
and random replacement.

> Write policy:

The write policy is a key element in the design of a cache and
determines how write operations to the cache are handled. There
are two main types of write policies: write-through and write-back.

In a write-through policy, the cache and the main memory are
always kept in sync, meaning that every write operation to the
cache is immediately written to the main memory as well. This
ensures that the data in the cache is always up-to-date, but can be
slower since every write operation must update both the cache and
main memory.

In a write-back policy, the cache only writes data back to the main
memory when the cache block is evicted from the cache. When a
write operation occurs, the data is written only to the cache, which
can be faster than write-through policy because the write
operation does not need to update main memory immediately.
Instead, the cache tracks which data has been modified and writes
back only the modified data to the main memory when the cache
block is evicted. However, this can lead to inconsistencies if the
modified data is not written back to the main memory before
eviction, and the main memory could contain outdated data.

> Number of caches:
The number of caches in a computer system can vary depending
on the architecture and design of the system, but a typical system

might have two or three levels of cache.

The first level cache, also known as the L1 cache, is usually the
smallest and fastest cache, and is located on the same chip as the



CPU. The L1 cache is designed to provide fast access to frequently
accessed data and instructions.

The second level cache, or L2 cache, is larger than the L1 cache and
is usually located on a separate chip, but still close to the CPU. The
L2 cache is designed to hold more data and provide faster access
to data that is not found in the L1 cache.

Some systems may also have a third level cache, or L3 cache, which
is even larger than the L2 cache and may be shared between
multiple cores or processors in a system. The L3 cache is designed
to provide additional storage for frequently accessed data and to
reduce the number of requests to main memory.

The number and size of caches in a system can have a significant
impact on overall performance, and cache design is an important
aspect of computer architecture.

> Line Size:

Cache design involves several key elements, and line size is one of
them. Line size refers to the number of bytes that are stored in a
single cache line. When data is accessed from main memory, it is
loaded into the cache in units of the line size.

Cache memory principles

It works on the principle of exploiting the locality of reference in
computer programs, which refers to the tendency of programs to
access the same data and instructions repeatedly over a short
period of time. The key principles of cache memory are as follows:

» Temporal Locality: This principle refers to the tendency of
programs to access the same data and instructions repeatedly
over a short period of time. Cache memory exploits temporal
locality by storing recently accessed data and instructions in a



small, fast memory that can be accessed more quickly than the
main memory.

> Spatial Locality: This principle refers to the tendency of
programs to access data and instructions that are close to each
other in memory. Cache memory exploits spatial locality by
storing contiguous blocks of memory in cache lines, so that
when one memory location is accessed, the entire cache line is
loaded into the cache.

Cache mapping techniques

They are used to determine how data is stored and retrieved in a
cache memory. The goal of cache mapping is to optimize the use
of the cache memory and reduce the number of cache misses,
which occur when data is not found in the cache and must be
retrieved from the main memory.

There are three main types of cache mapping techniques: direct
mapping, set-associative mapping, and fully-associative mapping.

> Direct mapping: In this technique, each memory block is
mapped to a specific cache line. The mapping is based on the
memory address of the block, with each block being stored in a
particular line based on the index/line no field . Direct mapping
is simple and fast, but it can suffer from cache thrashing when
multiple memory blocks map to the same cache line.

> Set-associative mapping: In this technique, each memory
block can be mapped to a set of cache lines. A set is a group of
cache lines that are accessed together. The mapping is based
on both the index/line no field and a subset of the tag field.
Set-associative mapping can reduce cache thrashing by
allowing for more flexibility in block placement.

> Fully-associative mapping: In this technique, each memory
block can be stored in any cache line. The mapping is based on



the entire tag field. Fully-associative mapping is the most
flexible and can provide the highest hit rate, but it is also the
most complex and expensive.

Direct mapping (Youtube Link)

=0

— : Divect  prapein 1 P

& 1 % 2
-
2 T lo

S
|
¢ 8
2T M3 1y s |
L9 anvdg) T
S
C
%

QUche ™™™

—

20 M 1w

1y 1S 26 2F

2 B 30 )
Qg').uog\&h
mm

Wa dwila mm nt equal o & blodey ond gy o

(f  Qlodt Cine (®) =Y work Val me o lin .

Ngs = 321 Y4 = gbleckg —
T Ne) = ({(m:‘u Hn(.} = @)Y = 2 lineg
( me lincsne = %S) e

£ ache e noo = [ MM 8lade) Molale (N0 af ling jn mtm;\,

est Foy beac O = 0O mad?)
‘ =0 ——
fov  hleda \ =\ med?) A
= )
Simelaval

6 |O1L Y
L 3 s

<
( E &



https://www.youtube.com/watch?v=Grnn7FWG3-g&list=PLAXUYU7PbJhiaOGvVtV0nw-ZSCSrDg5sK&index=8

b _ [Py S
Ir»-.. be o) 1k \ l&_ Ot Ad felta jh'p T t e
T~ oY every  w\,¢ le bne Ying gl g d
T ‘ .
r B ~2 1oy ¢
— | «t 3 £ 3
}-1 ] (& L\nch S_M_cg&w ling gk qec 7o caco likg {f
: S T E— &
MM A e ghga)  adbwss  divided wio oy ety
o Sbvk ]
B ‘Q§~33’9\ Abikz } \hix 'Zk.g\ rrrrrr I
____ro;:ijirs Bl odbset f

M M ,_'31 wm.s E'L_g,__ ,f. Q\;a(ﬂj qdé'ﬂﬂ “ﬂn"!l
RS = vwok = 27 ( Blodk o¥sw =2 b,?;)__,,,ﬂ.._

lwo bov e o SLV3 7_'Lb_”_tachrt_ 5o L\ % 51}5_‘@

—_F-x__

'rd‘{ ond )ing  gnp LT Mbing \hc(?c:r*'o Lm ggw—/
I JLP)r_( tonvg?t  Mlodd aq b \3\"\3:“1

6 05 @) S\

1 co] & wi

| 2'9: 0@ ¥ 1
0

;I T Lo@

—_—




\ | |  @==2
N & [ 1ot B+ Ye prosents ‘\‘:\un ha L -

N QPU asles g"ﬁ‘{ Q ;\‘@axﬁLq\,a"f o oNd A [ 7 i& \-'HS ;V)

(& U SR Lot O ad \ Yy @ache

S

M —>06kd & G L2 |

[ ipd 4 s ¢3 |
{ \ Gogb®h |yt

/} we P ollewing phydical m,&éﬂ-u/ R

R \L wt (@
S 0D | a \ma'#q
r l\*——__)
e
(l\

V;H. é‘.\&\' wé see \ine nl;, ;:U\J vewt B Vme heo G d—
cathe  and  we  matth b Yagg $ield  widh e
cache line & 4 mabchae then Cache Mt odher @ist
sy - |

2 e Abose  wE Qe Q\ Wl -

W J‘__ MiaS

\C)‘\ 5 &

r'S

e dog Jied  gF physcal  addvtsi  emd cache
line dotsnt  tatdh So  cadwg mi® - 2 cacho  mig thg
Wt have 4> ppprpach MM In Shidd e hlocky
Iwhy . Qache e we Navg g sive  pavhicular asoxd YO
V. -4 i epd Lot tan give the  Wond 1wy

(ache 4o CPV - y




Q. Suppose main memory has 64 blocks and cache memory
has 8 blocks when 10 blocks of main memory are used, show
how mapping is performed in direct mapping technique.

In direct mapping technique, each block of main memory is
mapped to a specific cache line. The cache is divided into a fixed
number of cache lines, and each line has a fixed size.

In this example, the main memory has 64 blocks, and the cache
memory has 8 blocks. To map a block from main memory to the
cache memory, we use the following formula:

Cache line = Main memory block % Number of cache lines

where '%' denotes the modulo operator.

In this case, the number of cache lines is 8, so we have:

Cache line = Main memory block % 8

Let's assume that the first 10 blocks of main memory are being
used, and we want to map them to the cache memory. The

mapping is shown in the table below:

Cacheline=10% 8

Main memory block | Cache line

O oo Nou b~ wpnp -0
—_ONOuULIDd~ WN - O




As we can see, each block of main memory is mapped to a specific
cache line based on its position in main memory. The first 8 blocks
are mapped to cache lines 0 to 7, and the next 2 blocks (blocks 8
and 9) are mapped to cache lines 0 and 1, respectively. If a block is
accessed that is already present in the cache memory, it is accessed
directly from the cache. If a block is not present in the cache
memory, it is fetched from main memory and stored in the cache,
replacing the block that was mapped to the same cache line.

(Explain like above diagram banayera ani.)
Merits:

» Direct cache mapping is a simple and efficient cache mapping
technique.

» It provides a fast access to the cache lines since each memory
block has a fixed location in the cache.

Demerits:
» Direct mapping suffers from the problem of cache thrashing,
where multiple memory blocks map to the same cache line,

leading to frequent cache misses and poor performance.

» Direct mapping cannot handle multiple accesses to different
memory blocks that map to the same cache line.

Associate mapping ( Youtube Link)



https://www.youtube.com/watch?v=GxgZO2NR7N0&list=PLAXUYU7PbJhiaOGvVtV0nw-ZSCSrDg5sK&index=10

T

s 673

9 3 o )
U E LA Ly
W - Ve M 9

|
1
2 .
£ | i
o < W Tl L ’_1_34)_’_\
et | ; 6 LY LS 6 1 il
: +

2y 1% 3o 3}_}’ e

1 | 7‘-'l = L :
L) o) - i

7 =X

Fevg any Yok oF MM con mmap 30 any Ning N9
Cathe me meay. ‘

Blode fiie = \int e =Y wevdy

'y "\ngiLq\ o ddyey =2
| < vyv
1 : : () bt Bsce
[ [ oew | ke | oT55)
oy - M q&%?ﬂ'

I etere The no »  net yenperatont hecaust ey Wock .
I rean Can mag With peny  \ine. .

—]

e —
—_—t—



f@l ih\‘hﬂ\ Qc P by e ¢

Tay Do)

\p’:ﬁ 2 9 w |\
A \LD—QT\__\_?M L
2V

|_'+ \$ 1o |

S

HeRr %749 W astd A rLew\\H r\gp'p\\\a:‘r ble do au mpst
e AN ) ana o4 agve Magpad: 4o (ache \ing .

ﬁ_Wb"O ((’\-ug LO\xs:l@l p\ug]cq\ addvyw

g .I [y ?)‘(d
> 1oLl |t ucd 4
D ¢

BN cache Wi b@touso %‘mw Makds  the @ty of O

tache  Yine . So yuivid edg

N Cach_e' Hew Q‘ wed /LT\ .5 Qien A e Y,

™

— (o1 [ oo |

|

et duq doe oatdy  with  dae of any cache &

Q@ h W cade wiss - SO WE have ‘o sopeyadn v T
Mm oy Y he pavicdaY \wed . A4 the Jepladhes

the e@BE  cache Ve guidh Wk and  0p0 gt dng wevd

A fTPmLu.‘wf% .

—_—— ]




Advantages:

> High flexibility

» Low conflict misses

Disadvantages:

» Higher hardware complexity and cache access latency

» Higher power consumption

Set- Associate mapping

Q. Describe how set associative mapping combines the feature
of direct and associated mapping technique.

(explained below with figure)

Advantages

> Better balance between hardware complexity and flexibility

» Lower conflict misses than direct mapping

Disadvantages

» Higher conflict misses than associative mapping

» More complex hardware than direct mapping



R | | S el A"pSog‘no:\ﬁve Mappiny

P B o o113 8
e _e QudD _ —
{ : | kY 4 B 5"
: \ :
— | ca) tlg o)l d
- < ‘ \ L R NS
i L ~ 4 Ml gy A
A - <lwumnuyl A
L BT Med s LS of 6 |24 1S x2%7) §
) - ANQL = (b - Mling , . l .
I = :
| Y ‘ . ‘ I
~ B = QY = 14 bledks o SR W |
| Y STe 6 € & ) k.
: : {‘g\f_.dm\fclm\
we dwe Cache Vae W Sekg, i £

&=
We divde  nm Lowos St asseciadiag Tecuusre
e M7 C_‘EﬂS_(’q’ Condtbng 0 fings " R catlad ) o “q St ;
el G0 LIRS W Condaln 3 ‘ML‘&QQ__
S s Gadive. _ ' :
Hst b o W8 cavacdeastic & vk ond T
Mapping  gye  USPA ' F
o ' - .
d L =0 O Dleck gheuld onl
- SR ‘ ( ; Sera : b _MC' —"'L___.-"':1 »h
_‘_;L’@A 3 =) [ NV th%
’L med L =0 ) S ;

= i W “Seilar
.’—\T-%r;am = 9 | _ .
e



wes ek 3 uiny Alved napping 0 hovactgyishis and

CVM”Q_"' we  Stled et \D8 B Agnciahive  mnapping

[ chava TG -

&)

- A
PR G\ oV . R
Tk :
18k |\ Tuik |k |
o Seny  Pleck alfsr
S P
Pur\\.u\" WY
. fas
D QU o 4 2 | Bved

TR U by o @A owe

O - 00abr¥™ 1 -o00 5]

| — o000l -cano 2 - oo i

Per Bode o i loede vy 6 I'me @ Q- Bk | W

\sadede Py 9 line O S8 | and S on

LaYE A S Q,Q‘ o
16010 \\QY 8y ol
Y oS

\

L

)

apde SO0 ORd om pem pavi 4B - @ madhts §n cache WiF-

‘ l()) "¢ g\\l’('\ 'hb qu' .

B ‘ ‘_C)\Q‘ \\ 0.5! TN SQ"‘F\ ¥ew degg ! makeh xs LQ..Q"LQ MF&S‘




Mapping

Type Advantages
Direct - Simple hardware
Mapping implementation

- Lower cache access

latency
Associative - High flexibility
Mapping

- Low conflict misses
Set- - Better balance
Associative between hardware
Mapping complexity and

flexibility

- Lower conflict
misses than direct

mapping

Disadvantages Use Case
- Limited flexibility =~ Small cache
due to one-to-one size or when
mapping data has a
regular access
- Higher conflict pattern

misses

- Higher hardware  Large cache
complexity and size or when
cache access latency data has an
irregular access
- Higher power pattern

consumption

Medium-sized
cache

- Higher conflict
misses than
associative mapping

-More
hardware
direct mapping

complex
than

Cache replacement algorithms

They used to determine which cache line to evict when a cache is

full and a new line needs to be brought in.

> To reduces miss

> To increase hit

Least Recently Used (LRU): The LRU algorithm evicts the cache
line that was least recently used. This algorithm works by keeping
track of the order in which cache lines are accessed and selecting

the line that was accessed furthest in the past.



First-In, First-Out (FIFO): The FIFO algorithm evicts the cache line
that was first brought into the cache. This algorithm works by
keeping track of the order in which cache lines are brought into
the cache and selecting the line that was brought in first.

Random: The random replacement algorithm evicts a randomly
selected cache line. This algorithm is simple to implement and
requires minimal hardware overhead, but it does not take into
account the access patterns of the data.

Least Frequently Used (LFU): The LFU algorithm evicts the cache
line that was accessed the least number of times. This algorithm
works by keeping track of the number of times each cache line is
accessed and selecting the line with the lowest count.

Most Recently Used (MRU): The MRU algorithm evicts the cache
line that was most recently used. This algorithm works by keeping
track of the order in which cache lines are accessed and selecting
the line that was accessed most recently.

Q. Give reasons why replacement algorithm is not required in
direct mapping technique.

In a cache memory system that uses direct mapping, each main
memory block can only be mapped to one specific cache memory
block. Therefore, there is no need for a replacement algorithm to
determine which cache block to evict when a new main memory
block needs to be brought into the cache. Here are some reasons
why replacement algorithm is not required in direct mapping
technique:

One-to-one mapping: In direct mapping, each main memory
block can only be mapped to one specific cache memory block.
Therefore, when a new block needs to be loaded into the cache, it



will only occupy one specific cache block, and no other block will
be affected.

Fixed cache size: In a direct mapping cache, the number of cache
blocks is fixed. This means that the cache cannot hold more blocks
than its capacity. Therefore, when a new block is loaded into the
cache, it must replace an existing block. The block to be replaced is
predetermined by the direct mapping scheme.

Simple design: Direct mapping is the simplest cache mapping
technique. It requires no complex algorithms to determine which
block to evict from the cache. This simplicity makes it easy to
implement and efficient in terms of both hardware and software.

Fast access time: Direct mapping provides fast access time
because the location of each main memory block is predetermined
by its mapping to a specific cache block. This eliminates the need
for complex algorithms to determine the location of a block in the
cache, resulting in faster access times.

Q. Why replacement algorithm is necessary in associative
mapping? Justify.

In an associative mapping cache, each main memory block can be
mapped to any cache memory block. Therefore, a replacement
algorithm is necessary to determine which cache block to evict
when a new main memory block needs to be brought into the
cache. Here are some reasons why a replacement algorithm is
necessary in associative mapping:

Multiple blocks mapping: In an associative mapping cache,
multiple main memory blocks can be mapped to the same cache
block. This means that when a new block needs to be loaded into
the cache, there may not be an empty cache block available. The
replacement algorithm is used to evict an existing block from the
cache to make room for the new block.



Variable cache size: In an associative mapping cache, the number
of cache blocks is not fixed. The cache can hold as many blocks as
there is available space. Therefore, the replacement algorithm is
necessary to decide which block to evict when a new block needs
to be loaded into the cache.

Complex design: Associative mapping is a more complex cache
mapping technique compared to direct mapping. It requires a
more complex hardware design and software algorithms to
determine the location of a block in the cache. The replacement
algorithm is a critical part of this algorithm and determines which
block to evict from the cache when there is a cache miss.

Longer access time: Associative mapping provides a longer access
time compared to direct mapping because the location of each
main memory block is not predetermined. Therefore, a more
complex algorithm is required to determine the location of a block
in the cache. This algorithm includes the replacement algorithm,
which adds to the overall access time.

Q. Explain Least Recently Used (LRU) replacement algorithm in
case of hit and miss with suitable example. (YOUTUBE)

COY\&EJUL o _]Fuw oModafive (Cocthe wit B cache blochs (o-}') and
4he fo?fowm sequence Qf mirmﬂ'rj b?och %eguw/a

43253 19 2§5 6,35, ¢15 2233%2”57

|_f LRU ‘nepﬂacemtnf b’ g i4 used, which Cache black wite have

48
2004 ug
J ,,lg:zl 22

2

~

me mohJ bloch, F

M3

16
3
Cache

H AN DWW R O



https://www.youtube.com/watch?v=w32d1lD0Jb0&list=PLAXUYU7PbJhiaOGvVtV0nw-ZSCSrDg5sK&index=15

Suppose we have a cache memory with four blocks and the
following access sequence:

Block 1 is accessed.
Block 2 is accessed.
Block 3 is accessed.
Block 4 is accessed.
Block 1 is accessed again.
Block 2 is accessed again.
Block 5 is accessed (miss).

Here's how LRU would work in this example:

Block 1 is accessed and stored in the first cache block.
Cache: 1, -, -, -

Block 2 is accessed and stored in the second cache block.
Cache: 1, 2, -, -

Block 3 is accessed and stored in the third cache block.
Cache: 1, 2, 3, -

Block 4 is accessed and stored in the fourth cache block.
Cache: 1,2, 3,4

Block 1 is accessed again. Since Block 1 is already in the cache,
there is a cache hit and the cache remains unchanged.
Cache: 1,2, 3,4

Block 2 is accessed again. Since Block 2 is already in the cache,
there is a cache hit and the cache remains unchanged.
Cache: 1,2, 3,4

Block 5 is accessed and is not in the cache (miss). The LRU
algorithm determines that Block 1 has not been accessed for the
longest time and replaces it with Block 5.

Cache: 5, 2, 3,4



The FIFO (First-In-First-Out) cache replacement algorithm is a
simple and commonly used approach in computer memory
management. In this algorithm, the cache keeps track of the order
in which items are stored, and when a new item is added to the
cache, it is placed at the end of the list. When the cache reaches its
maximum capacity and a new item needs to be added, the oldest
item in the cache (i.e., the item that was added first) is removed.

Let's consider an example of a cache that can hold three items, and
the following sequence of requests for data:

Read item A - Miss

Read item B - Miss

Read item C - Miss

Read item A again - Hit
Read item D - Miss

Initially, the cache is empty:

Cache
When item A is requested, the cache misses and it is added to the
cache:

Cache
A

When item B is requested, the cache misses again and it is added
to the end of the list:

Cache
A
B

When item C is requested, the cache misses again and it is added
to the end of the list:

Cache
A



B
C

When item A is requested again, it is already in the cache, so it is a
hit:

Cache
A
B
C

Finally, when item D is requested, the cache misses and the oldest
item in the cache (item A) is removed, and item D is added to the
end of the list:

Cache
B
C
D

This is how the FIFO cache replacement algorithm works. It can be
a simple and effective approach for managing cache memory in a
variety of computer systems.



Chapter 7 (10 marks)

1/0 organization

External devices

Peripherals, also known as peripheral devices, are external devices that are
connected to a computer system to enhance its functionality and provide
additional features. These devices are not the core components of the
computer but serve specific purposes and interact with the computer system
to input or output data.

1/0 Module

An 1/0 (Input/Output) module, also known as an 1/O controller or I/O interface,
is a device or component in a computer system that facilitates communication
between the CPU (Central Processing Unit) and external devices. It manages
the exchange of data and control signals between the computer and various
input and output devices, such as keyboards, mice, monitors, printers, storage
devices, and network interfaces.

Address Lines

Data Lines

Control Lines

System
Bus

1O Module

Links to
peripheral
devices

I/0 Module Functions

The I/O module is a special hardware component interface between the CPU
and peripherals to supervise and synchronize all I/O transformation

The detailed functions of I/O modules are;



Control & Timing:
I/O module includes control and timing to coordinate the flow of
traffic between internal resources and external devices. The control of the

transfer of data from external devices to processor consists following steps:

® The processor interrogates the 1/0O module to check status of the attached
device.

® The I/O module returns the device status.

® |If the device is operational and ready to transmit, the processor requests
the transfer of data by means of a command to I/O module.

® The I/O module obtains the unit of data from the external device.

® The data are transferred from the I/O module to the processor.

Processor Communication:

I/O module communicates with the processor which involves:

® Command decoding: I/O module accepts commands from the processor.

® Data: Data are exchanged between the processor and I/O module over
the bus.

® Status reporting: Peripherals are too slow and it is important to know the
status of I/0 module.

® Address recognition: |/O module must recognize one unique address for
each peripheral it controls.

Device Communication:

In the context of an I/O module, device communication refers to the exchange
of commandes, status information, and data between the module and the
connected external devices.

Commands are instructions sent from the processor to the I/O module,
specifying the desired actions to be performed by the device. Status
information is provided by the 1/0 module to the processor, indicating the



current state or condition of the device. Data refers to the actual information
being transferred between the external device and the processor.

Data buffering:

Data buffering is essential when the 1/0O device operates at a different speed
than the memory. If the device is faster, there is a risk of losing data. To
prevent this, an I/O module buffers the data. This intermediate step allows the
memory to catch up with the device's speed and ensures that no data is lost.
Buffering means temporarily storing the data in a dedicated area called a
buffer or cache. Conversely, if the device is slower, the I/O module buffers the
incoming data from the slower device and holds it in the buffer until the
memory is ready to receive it.

Error detection:

Error detection is another critical function of the I/0 module. It is responsible
for detecting mechanical and electrical malfunctions reported by the device,
such as paper jams or bad ink tracks. The module also identifies unintentional
changes to the bit pattern and transmission errors. Techniques like parity bits,
checksums, or CRC calculations are used to verify data integrity and detect
errors during transfer.

An I/0 interface

An I/O (Input/Output) interface, also known as an I/O controller or I/O module,
is a hardware component that allows a computer system to communicate with
external devices and exchange data. It serves as a bridge between the
computer's internal components and the outside world.

1/0 Bus and Interface Modules

The 1/0O bus consists of data lines, address lines and control lines.

IO bus
Data
Processor Address
Control
|Interface| [Interface| [interface| [interface]
Keyboard]| " 3 i i
and Printer agnetic agnetic
display disk tape
terminal




peripheral devices are connected to the CPU through a bus that contains
the data bus, address bus, and control bus. However, the processor is not
directly connected to these devices and requires an interface.

The interface acts as a translator and converter between the CPU and
peripheral devices.

CPUs are significantly faster than peripheral devices such as keyboards,
printers, and magnetic disks. To synchronize their speeds, an interface is
necessary to match the data transfer rates.

different devices generate signals of varying nature, such as electrical,
electro-mechanical, or electromagnetic. The interface assists in converting
these signals to ensure compatibility.

CPUs have specific data word sizes (e.g., 32-bit or 64-bit), whereas
peripheral devices like keyboards, printers, and magnetic disks may have
different formats and word sizes. The interface helps align the data
formats and word sizes between the CPU and the peripherals.

peripheral devices have different functions and require different logics or
programs for data transfer. Instead of creating separate logics for each
device, an interface provides a standardized way to handle the data
transfer process.

using interfaces helps avoid unnecessary complexity in handling different
devices and allows for easier system upgrades or changes without altering
the underlying logic.

1/0 versus Memory Bus

Computer buses can be used to communicate with memory and I/O in three
ways:

>

Use two separate buses, one for memory and other for 1/0O. In this method,
all data, address and control lines would be separate for memory and 1/0.

Use one common bus for both memory and I/O but have separate control
lines. There is a separate read and write lines; 1/0 read and 1/0O write for
I/O and memory read and memory write for memory.



» Use a common bus for memory and I/O with common control line. This
I/O configuration is called memory mapped.

Isolated 1/0 versus Memory Mapped 1/0
Isolated 1/0

» Separate 1/O read/write control lines in addition to memory read/write
control lines

> Separate (isolated) memory and I/O address spaces
» Distinct input and output instructions
Memory-mapped 1/0

» Asingle set of read/write control lines (no distinction between memory
and 1/0O transfer)

» Memory and I/O addresses share the common address space which
reduces memory address range available

» No specific input or output instruction so the same memory reference
instructions can be used for 1/O transfers

» Considerable flexibility in handling 1/O operations
Q. explain three reasons behind the requirement of i/o interfaces.?

Device Connectivity: I/0O interfaces enable computers to connect and
communicate with a wide range of external devices. These devices can include
peripherals such as keyboards, mice, printers, scanners, and storage devices
like hard drives and USB flash drives.

Data Transfer and Communication: I/O interfaces play a crucial role in
facilitating data transfer and communication between the computer and
external systems. For example, network interface cards (NICs) provide the
necessary interface for connecting a computer to a local area network (LAN)
or the internet.

Standardization and Compatibility: I/O interfaces help establish standards
and ensure compatibility between different devices and systems. By providing
a standardized interface, 1/O interfaces enable devices from different



manufacturers to connect and communicate with each other seamlessly. For
instance, USB (Universal Serial Bus) has become a widely adopted standard for
connecting various peripherals to computers, regardless of the specific
manufacturer or device type. Standardized 1/O interfaces reduce complexity,
promote interoperability, and simplify the integration of different hardware
components and devices within a computer system.

Modes of transfer
Data Transfer between the central computer and 1/O devices may be handled
in a variety of modes. Some modes use CPU as an intermediate path, others

transfer the data directly to and from the memory unit.

Data transfer to and from peripherals may be handled in one of three possible
modes.

® Programmed I/O

® Interrupt Driven I/O

® Direct Memory Access (DMA)

Programmed 1/0

refers to a method of data transfer between a computer's CPU (Central
Processing Unit) and an 1/0O (Input/Output) device. Here are the key points to
understand:

Programmed 1/0O is initiated by specific instructions in the computer program.
In this method, the CPU continuously monitors the interface between the CPU
and the 1/0O device.

There are three types of instructions used: input, store, and output.

® Input instruction: Transfers data from the 1/0O device to the CPU.

® Store instruction: Transfers data from the CPU to memory.

® Output instruction: Transfers data from the CPU to the I/O device.

Programmed 1/O is typically used in slow-speed computers and may not be
efficient if the CPU and I/O device have different speeds.

Here's how data transfer occurs from an |/O device to the CPU:

The I/O device puts the data on the I/O bus and activates the data valid signal.



The interface receives the data in the data register, sets the status register's F
bit (indicating data availability), and activates the data accepted signal.

The I/O device then disables the data valid line.

The CPU continuously monitors the interface by checking the F bit of the
status register.

® |[f the F bit is set (1), the CPU reads the data from the data register and
sets the F bit to zero.
® |[f the F bit is reset (0), the CPU continues monitoring the interface.

The interface disables the data accepted signal, and the system returns to an
initial state, waiting for the next item of data to be placed on the data bus.

_ Databus 1 Interface ~ li0 bus _
Address bus Dataregister [ : ]
> Data valid IO
CPU 0 read . N device
10 write Status F Dataaccepted
¥ | register i

Fig. Data transfer from I/o to cpu

—| Read status register |
Check flag bit

Read data register
Transfer datato memory

program




Characteristics:

Continuous CPU involvement
CPU slowed down to 1/O speed
Simple

|
|
|
B Least hardware

Applications of programmed 1/0 method

Useful in small low speed computers

Used in systems that is dedicated to monitor a device continuously.
Used in the data register.

Used to check the status of the flag bit and branch

Interrupt-driven 1/O

is a method that allows more efficient communication between the CPU and
I/O devices. Here are the key points to understand:

1.

Polling, which involves repeatedly checking the status of an I/O device,
consumes valuable CPU time.

Interrupt-driven 1/O avoids constant polling by establishing
communication only when data needs to be transferred.

In this method, the I/O interface, instead of the CPU, monitors the |/O
device.

When the interface determines that the I/O device is ready for data
transfer, it generates an Interrupt Request (IRQ) to the CPU.

Upon receiving an interrupt, the CPU temporarily pauses its current task,
switches to the interrupt service routine (ISR) to process the data transfer,
and then returns to the original task.

The problem with programmed 1/O is that the processor has to wait for
the I/O module to be ready, resulting in degraded system performance.

With interrupt-driven 1/O, the CPU can issue an I/O command to the
module and continue with other tasks.

The 1/0 module interrupts the CPU when it is ready to exchange data,
requesting service.



9. The interrupt can be initiated either by software or hardware.
10. Here's how interrupt-driven 1/O operates:
a) The CPU sends a read command to the I/0 module.

b) While the CPU continues other work, the I/0 module retrieves data
from the peripheral device.

¢) The I/O module interrupts the CPU to indicate that data is available.

d) The CPU responds to the interrupt and requests the data.

e) The I/0 module transfers the data to the CPU.
From the CPU's perspective, interrupt processing involves the following steps:
The CPU issues a read command.
The CPU continues with other tasks.

At the end of each instruction cycle, the CPU checks for interrupts.
If an interrupt occurs:

® The CPU saves its current state (registers).
® |t processes the interrupt by executing the interrupt service routine.
® The CPU fetches and stores the transferred data.

Hardware Software

—A — A

Device controller or
other system hardwar
issues an interrupt

Save remainder of
process state
information

Processor finishes
execution of current
instruction

Process interrupt

Processor signals
acknowledgment
of interrupt

Restore process stat
information

Restore old PSW
and PC

Processor pushes PS
and PC onto control

stack

Processor loads ne
PC wvalue based on
interrupt




Priority Interrupt

» Priority interrupts are a concept in computer systems where different
interrupts are assigned different levels of priority. This allows the system
to determine which interrupt should be serviced first when multiple
interrupts occur simultaneously.

Direct Memory Access (DMA)

is @ method used in computer systems to coordinate data transfers between
an 1/0O device and the core processing unit or memory. It is a faster
synchronization mechanism compared to interrupts, offering improved latency
and throughput.

» Data
Count

Data
Register

h 4

DataLines 4 {

v

Address

Address Lines 4 >

DMAR 1
DMA Acknowledge
Interrupt 4

Read

Write

v

Control
Logic

Yy

» | Interrupt
BG
+|BR
RD WR Addr Data RD WR Addr Data

J 'Y 4 'y 'y 'y
Read control
3

Random-access
CPU memory unit (RAM)

v Write control

v Databus v

3
v Address bus
¥ Y
Address
select

v v v v
L RD WR Addr Data
DS DMA ack.

1o
Peripheral
device

v

RS DMA
BR Controller

v

BG _ DMArequest

Interrupt




DMA is a method used in computer systems to facilitate data transfers
between an |/O device and memory without involving the CPU extensively.

DMA operates through a dedicated DMA controller that coordinates the data
transfer process.

Here's a simplified overview of the DMA process:

The CPU initiates the DMA transfer by providing the DMA controller with
the necessary information, such as the starting memory address, the
device address, and the amount of data to be transferred.

The CPU can then proceed to perform other tasks while the DMA
controller handles the actual data transfer.

The DMA controller interfaces with the 1/O device and directly accesses
the system memory via the memory bus.

The DMA controller takes control of the memory bus and transfers the
data between the 1/0O device and memory without the CPU's active
involvement.

The CPU's involvement during DMA transfer is minimal, and it may be
temporarily suspended or have limited access to the memory bus during
the transfer.

Once the DMA transfer is complete, the DMA controller may generate an
interrupt to notify the CPU.

Key points to note about DMA:

DMA is beneficial for large data transfers or frequent I/O operations that
would otherwise consume a significant amount of CPU resources and time.

DMA reduces CPU involvement in data transfer, resulting in improved
system performance, reduced latency, and increased throughput.

DMA operations can be categorized into cycle stealing and burst mode.
Cycle stealing involves taking control of the memory bus for a single data
transfer, while burst mode allows exclusive access for a block of data
transfers.



® DMA transfers can be initiated for both reading data from an 1/O device to
memory (input) and writing data from memory to an 1/O device (output).

® DMA controllers are typically integrated into the computer system's
hardware and can be programmed by the CPU to perform specific data
transfer tasks.

1/0 processor

also known as an IOP, is a specialized processor in a computer system that
handles input/output (I/O) operations. Here are the key points to understand
about 1/0O processors:

® In some computer systems, the interface logic and direct memory access
(DMA) requirements are combined into a single unit called an 1/0
processor (IOP).

® The IOP is responsible for managing communication between the CPU
and 1/O devices, handling multiple peripherals through its DMA and
interrupt capabilities.

® In a system with an IOP, the computer is divided into three separate
modules: the memory unit, the CPU, and the IOP.

® The IOP is a specialized processor that not only performs data transfers
between 1/O devices and memory but can also execute instructions
specific to I/O operations.

® The IOP interfaces with the system and devices, serving as a mediator
between the CPU and the /O subsystem.

® The IOP is capable of executing a set of I/O instructions, which allow it to
perform operations such as loading and storing data into memory and
controlling 1/0O devices.



® When an I/O transfer occurs, the sequence of events involves moving or
operating the results of an /O operation into the main memory. This
process is typically facilitated by a program for the IOP, which resides in
the main memory.

® In the hierarchy of the computer system, the CPU acts as the master
processor, while the IOP functions as a slave processor that handles 1/0
operations on behalf of the CPU.

In summary, an 1/O processor (IOP) is a specialized processor with direct
memory access capability that manages communication between the CPU and
I/O devices. It handles data transfers, executes 1/O instructions, interfaces with
the system and devices, and operates as a slave processor in the computer
system hierarchy.
LA% BELGAILW L WY LLELW LIDW AWl Ll 4 WJIRA YV W J.JJ.LIL'L.-!-J'L.I‘J..
cpu]  [ioP}———[01]
|
main memory __'
EI bus

_ Where, D1, D2,.., Dn
vo are peripheral devices
us

Fig.7.10 Block diagram of a computer with [/O processor

CPU-IOP communication

Here's an explanation of the CPU-IOP communication process based on the
example provided:

» The CPU sends an instruction to test the IOP path

» The IOP responds by inserting a status word in memory

» The status word indicates the condition of the IOP and I/O device

» The CPU refers to the status word in memory

> If everything is fine, the CPU sends an instruction to start I/O transfer
» The CPU continues with another program while IOP is busy

> |IOP sends an interrupt request to the CPU when 1/O transfer is complete



> CPU issues an instruction to read the status from the IOP

» |OP places the contents of its status report into a specified memory
location

» Status word indicates completion or error

This CPU-IOP communication process allows the CPU and IOP to coordinate
and exchange information, enabling efficient input and output operations in a
computer system.

Data Communication Processor

Data Communication Processor is a type of /0 (Input-Output) processor that
handles the distribution and collection of data from remote terminals
connected through communication lines, such as telephone lines.

Handles distribution and collection of data from remote terminals.
Connects remote terminals through communication lines.

Acts as an I/O processor.

Communicates with terminals through a single pair of wires.

YV V VYV

Transmission Types:

» Synchronous Transmission: Continuous and synchronized data transfer.
> Asynchronous Transmission: Data sent in separate characters with start
and stop bits.

Transmission Error Detection:

» Parity: Extra bit added to each character for error detection.

Checksum: Sum of data bits sent as extra information for error detection.

» Cyclic Redundancy Check (CRC): Mathematical algorithm-based
checksum for error detection.

» Longitudinal Redundancy Check (LRC): Extra block of bits added to the
end of transmission for error detection.

Y

Transmission Modes:

> Simplex: One-way data transmission (e.g., TV broadcasting).



> Half Duplex: Two-way transmission, but not simultaneously (e.g., walkie-
talkie).
> Full Duplex: Two-way simultaneous transmission (e.g., telephone).

Data Link and Protocol:

> Data link: Communication lines, modems, and equipment used for
information transmission.
» Protocol: Set of rules and conventions for orderly information transfer.

1. Why priority interrupt is needed for data transmission between COU
and 1/0 device. Explain the types of priority interrupt in detail?

Priority interrupts are needed in this context for several reasons:

Time-sensitive operations: Certain |/O devices may require immediate
attention from the CPU due to time-critical operations. By assigning a higher
priority to such interrupts, the CPU can quickly service these devices,
minimizing the risk of data loss or system failure.

Device dependencies: Some I/O devices may have dependencies on others.
For instance, a disk controller may need to communicate with a network
interface to retrieve data from a remote server. In such cases, assigning
priorities ensures that the required devices receive attention in the correct
order, enabling efficient data transfers and preventing bottlenecks.

System efficiency: Prioritizing interrupts helps optimize system performance.
By servicing high-priority interrupts first, the CPU can respond promptly to
critical events, reducing latency and improving overall system responsiveness.
This ensures that time-critical tasks receive the necessary resources in a timely
manner.

Types of Priority Interrupts:

Fixed Priority Interrupts: In this scheme, each interrupt source or device is
assigned a fixed priority level during system configuration. The priority levels
remain constant and determine the order in which interrupts are serviced.
Higher priority interrupts preempt lower priority interrupts, allowing critical
operations to be handled first.



Software-Programmable Interrupts: These interrupts provide flexibility by
allowing the CPU or the software to dynamically assign priorities to interrupt
sources. The software can modify the priority levels based on the system's
requirements or the nature of the tasks. This adaptability enables efficient
utilization of system resources and better responsiveness to changing
conditions.

Daisy Chain Interrupts: In a daisy chain configuration, the interrupt signals
from multiple devices are linked in a chain. Each device is assigned a priority
level, and the chain follows that order. When an interrupt occurs, the CPU
services the interrupt from the highest priority device in the chain. Daisy chain
interrupts are commonly used in systems with a large number of devices or
complex interrupt requirements.

Nested Interrupts: Nested interrupts allow interrupts to be interrupted by
higher priority interrupts. If a lower-priority interrupt is being serviced and a
higher-priority interrupt occurs, the CPU temporarily suspends the lower-
priority interrupt, saves its context, and handles the higher-priority interrupt.
Once the higher-priority interrupt is completed, the CPU resumes the
execution of the lower-priority interrupt from where it left off. This nesting
capability is useful when dealing with a mix of interrupt priorities in complex
systems.

2. how is dma techniques is different from programmed input-output?
DMA (Direct Memory Access) and programmed |/O (Input/Output) are two
different techniques used for data transfer between 1/O devices and memory
in a computer system. Let's explore how they differ:

Programmed 1/0:

In programmed 1/0O, the CPU is responsible for managing the entire data
transfer process between the I/0O device and memory. When an 1/O operation
is required, the CPU initiates the transfer by executing specific I/O instructions.

The CPU performs the following steps:

> ltissues a command to the I/O device, specifying the operation to be
performed (e.g., read or write).

» It waits for the device to complete the operation, often by repeatedly
polling a status register to check if the device is ready.



» Once the device completes the operation, the CPU transfers the data
between the 1/0 device and memory using load and store instructions.

» Programmed I/O requires continuous CPU involvement throughout the
data transfer process, which can result in inefficient CPU utilization and
increased overhead. The CPU spends a significant amount of time waiting
for 1/0O operations to complete, limiting its availability for other tasks.

DMA (Direct Memory Access):

DMA is a technique that offloads the data transfer task from the CPU to a
dedicated DMA controller, also known as a DMA engine or DMA controller.
The DMA controller acts as an intermediary between the 1/0 device and
memory, allowing direct data transfer without CPU intervention. The steps
involved in a DMA transfer are as follows:

» The CPU sets up the DMA controller by providing it with the necessary
information, such as the source and destination addresses in memory and
the transfer length.

» The CPU initiates the transfer by issuing a DMA command to the DMA
controller.

» The DMA controller takes control of the system bus and transfers data
directly between the 1/O device and memory without CPU involvement.

» Once the transfer is complete, the DMA controller releases the bus and
signals the CPU.

DMA offers several advantages over programmed 1/0:

» Reduced CPU overhead: Since the CPU is not involved in the actual data
transfer, it is free to perform other tasks concurrently. This improves
overall system performance and efficiency.

> Faster data transfer: DMA transfers data directly between the 1/0 device
and memory, bypassing the CPU. This eliminates the need for multiple
load and store instructions, resulting in faster data transfer rates.

> Improved data streaming: DMA is particularly beneficial for devices that
require continuous streaming of data, such as sound cards or video
capture cards. The DMA controller can continuously fetch data from the



I/O device and store it directly in memory without CPU intervention,
enabling smooth and uninterrupted data streaming.

Increased system responsiveness: With DMA, the CPU can offload time-
consuming data transfer tasks to the DMA controller, allowing it to focus
on critical tasks and respond more quickly to interrupts and other events.

It's important to note that both programmed 1/O and DMA have their use
cases. Programmed 1/O is often suitable for low-speed or sporadic I/O
operations, where the CPU's involvement does not significantly impact overall
system performance. DMA, on the other hand, is more beneficial for high-
speed data transfers or devices that require continuous and efficient data
streaming.

3. differentiate between isolated and memory mapped input output.

Isolated and memory-mapped input/output (I/O) are two different
approaches used in computer systems to interact with peripheral devices.
Here's a brief differentiation between the two:

Isolated 1/0:

>

In isolated 1/0O, the CPU communicates with peripheral devices using
dedicated input and output instructions.

Isolated 1/O uses a separate address space distinct from the memory
address space

Special instructions are provided for I/O operations, such as IN and OUT
instructions in x86 assembly language.

Typically, a separate 1/O bus or a set of dedicated lines are used for
isolated 1/0.

The CPU has direct control over the timing and data transfer to and from
the peripherals.

Peripherals are assigned specific I/O addresses, and the CPU accesses
them by specifying the appropriate 1/0 address in the instructions.

Isolated 1/0 may involve slower access speeds compared to memory-
mapped I/0 due to the need for dedicated instructions and bus cycles.



Memory-mapped 1/0:

>

In memory-mapped I/O, peripheral devices are assigned addresses within
the same memory address space as the main memory.

Memory-mapped I/O uses the same address space as the memory,
treating peripheral devices as if they were memory locations.

Regular load and store instructions are used to interact with peripheral
devices, treating them as if they were accessing or storing data in memory.

Memory-mapped I/O shares the same bus as the memory bus.

The CPU indirectly controls the peripherals by reading from and writing to
their memory-mapped addresses.

Peripherals are assigned specific memory addresses, and the CPU accesses
them through normal load and store instructions, just like accessing
memory.

Memory-mapped I/O can offer faster access speeds compared to isolated
I/O since it leverages the existing memory bus infrastructure.

In summary, isolated 1/O involves dedicated instructions and separate 1/0
address spaces for accessing peripheral devices, while memory-mapped 1/0
treats peripheral devices as if they were memory locations, utilizing the same
address space and regular load and store instructions. Memory-mapped 1/0
can offer faster access speeds but requires careful management to prevent
conflicts between memory and I/0O addresses.

Q. why data communication processor is required in an 110 organization?

In an I/O organization, a Data Communication Processor (DCP) is required to
handle the specific requirements of data communication tasks. Here are some
reasons for its necessity:

>

Protocol handling: DCPs are designed to handle communication
protocols required for data transfer between devices. They can perform
tasks like packetization, error checking, flow control, and protocol-specific
processing.

Offloading CPU: DCPs can offload the CPU from handling low-level data
communication tasks, allowing it to focus on other critical operations.



> Speed and efficiency: DCPs are optimized for data communication tasks,
enabling faster and more efficient handling of data transfers compared to
general-purpose CPUs.

> Scalability: DCPs are often designed to support multiple 1/0 channels and
high-speed data transfer rates, making them suitable for handling large-
scale data communication requirements.

4. how does dma have request over the cpu when both request a memory
transfer?

When both the Direct Memory Access (DMA) controller and the CPU request a
memory transfer, there is a priority mechanism in place to determine which
device gets access to the memory bus. The DMA controller typically has
higher priority over the CPU for memory transfers.

By giving priority to the DMA controller, the system ensures efficient and
timely data transfers between 1/0O devices and memory without significantly
impacting the CPU's performance. The DMA controller can handle large data
transfers in the background, freeing up the CPU to perform other tasks during
the transfer.

5. In memory-mapped I/0, the memory address space is reduced?

to allocate a portion of it for mapping I/O devices. This is done due to address
space constraints and to prevent conflicts between memory and 1/O addresses.
By mapping I/O devices to specific memory addresses, it simplifies access and
allows the CPU to use the same instructions for accessing both memory and
I/0. Memory-mapped I/O offers advantages such as simplified programming,
enhanced performance, and efficient utilization of the memory bus. However,
careful management is required to ensure proper allocation of memory
addresses for both general-purpose memory and 1/0O devices.

6. compare programmed i/o,interrupt driven i/o and direct memory
access(dma)?

Certainly! Here's a comparison of Programmed 1/O, Interrupt-driven 1/O, and
Direct Memory Access (DMA):

Programmed 1/0:



In Programmed 1/0O, the CPU actively manages the entire 1/O process.

The CPU initiates 1/O operations by sending specific instructions to the 1/O
device.

The CPU continuously polls or checks the status of the I/O device to
determine if the operation is complete.

It is a simple and straightforward method but can be inefficient as the CPU
is fully involved in 1/0O, resulting in a waste of processing time.

Interrupt-driven 1/0:

>

>

In Interrupt-driven 1/0, the CPU initiates an I/O operation and then
continues with other tasks.

The CPU is interrupted by the 1/0O device when the operation is finished or
requires attention.

The CPU acknowledges the interrupt and handles the necessary 1/0O tasks
in response.

This approach reduces CPU involvement in I/O operations, allowing it to
perform other tasks while waiting for 1/O completion.

It is more efficient than Programmed 1/O as it minimizes CPU idle time and
allows for multitasking.

Direct Memory Access (DMA):

>

DMA allows data to be transferred directly between an |/O device and
memory without continuous CPU involvement.

A DMA controller takes over the data transfer process.

The CPU sets up the DMA controller with necessary transfer parameters
and initiates the transfer.

The DMA controller accesses memory independently of the CPU,
transferring data between the 1/0 device and memory.

DMA significantly reduces CPU overhead and increases data transfer rates,
making it the most efficient I/O method for large data transfers.

Comparison:

>

>

>

Programmed 1/O requires continuous CPU involvement, leading to
inefficient use of processing time.

Interrupt-driven 1/O reduces CPU involvement by allowing the CPU to
perform other tasks while waiting for I/O completion.

DMA further reduces CPU overhead by enabling direct data transfer
between 1/0 devices and memory without CPU intervention.



> Programmed I/O is simplest but least efficient, while DMA is the most
efficient but more complex to set up.

» Interrupt-driven 1/0O provides a balance between simplicity and efficiency,
suitable for many 1/O scenarios.

The choice of which method to use depends on factors such as the nature of
the 1/O operation, data transfer size, and the need for CPU multitasking.

9. Why input-output processor is needed in an input-output
organization? How does a computer know which device issued the
interrupt; if multiple devices, how does the selection take place?

An Input-Output Processor (IOP) is a component in a computer system that is

responsible for managing input and output operations. Its primary purpose is

to facilitate communication between the central processing unit (CPU) and the
input/output (I/O) devices connected to the system.

There are several reasons why an IOP is needed in an input-output
organization:

> Efficiency: I/O operations involve transferring data between the CPU and
external devices, such as keyboards, printers, disks, and network interfaces.
The IOP offloads these tasks from the CPU, allowing it to focus on
computation and processing tasks, which improves overall system
efficiency.

> Device Independence: The IOP provides a standardized interface for
different types of 1/O devices. It abstracts the complexities of interacting
with various devices, allowing the CPU to communicate with the IOP using
a consistent set of commands and protocols. This simplifies the
development of software and makes it easier to add or upgrade devices
without major modifications to the CPU.

> Concurrency: The |IOP can handle I/O operations concurrently with the
CPU's computation tasks. While the CPU is executing instructions, the IOP
can manage data transfers to and from the 1/0O devices in parallel,
minimizing the waiting time for /O operations and improving overall
system performance.

When an |/O device needs attention or requires service, it generates an
interrupt to notify the computer system. The interrupt signals that an event
has occurred, such as data ready for input or output, or an error condition.



The computer system needs to determine which device issued the interrupt to
handle it appropriately.

To identify the device that issued the interrupt, several methods can be used:

» Polling: The CPU sequentially checks each device's status or interrupt
request line to identify the source of the interrupt. This method involves
regularly querying each device, which can be time-consuming and
inefficient.

> Interrupt Request (IRQ) lines: Each device is assigned a specific interrupt
line. When a device requires attention, it asserts its corresponding IRQ line,
signaling the CPU to handle the interrupt. The CPU can then determine
the interrupting device by examining the state of the IRQ lines.

> Interrupt priority: Devices can be assigned different priority levels. When
multiple interrupts occur simultaneously, the CPU can use the priority level
associated with each device to determine the order in which to handle the
interrupts. The device with the highest priority gets serviced first.

The method used to select and handle interrupts depends on the computer
system's design and the specific interrupt handling mechanisms implemented
in the hardware and operating system.

10. Mention the three possible configurations of DMA and compare
them.

Direct Memory Access (DMA) is a technique used in computer systems to
transfer data between peripheral devices and memory without involving the
CPU. DMA can be configured in three different ways:

> Single Bus Master DMA: In this configuration, only one device on the
system bus can act as the DMA controller or bus master. The DMA
controller takes control of the bus and transfers data between the
peripheral device and memory directly, without CPU intervention. While
the DMA transfer is in progress, the CPU is idle and cannot access the bus.
This configuration is simple and cost-effective but can result in bus
contention and reduced CPU efficiency.

> Multiple Bus Master DMA: This configuration allows multiple devices to
act as DMA controllers or bus masters. Each bus master is assigned a
specific priority level, and the highest priority master gains control of the
bus when it needs to transfer data. The bus arbitration mechanism is used



to determine the order in which the bus masters access the bus. This
configuration provides better flexibility and reduces bus contention
compared to single bus master DMA. However, it requires more complex
hardware and coordination mechanisms to manage multiple bus masters
effectively.

When comparing these DMA configurations, the key factors to consider are:

>

Bus Contention: Single bus master DMA is more prone to bus contention
because only one device can access the bus at a time. Multiple bus master
DMA provide better bus utilization and reduce contention by allowing
multiple devices to act as bus masters.

Flexibility and Scalability: Multiple bus master DMA offer more flexibility
and scalability compared to single bus master DMA. They allow for the
integration of additional devices as bus masters without major
modifications to the system architecture.

Complexity and Cost: As the number of bus masters increases, the
hardware complexity and cost of the DMA system also increase. Single
bus master DMA is the simplest and most cost-effective configuration,
while multiple bus master DMA configurations require additional
hardware and coordination mechanisms, making them more complex and
costly to implement.

The choice of DMA configuration depends on the specific requirements of the
computer system, including the number and type of peripherals, the need for
bus efficiency, and the available resources and budget.



CHAPTER 8 (4 Marks)
MULTIPROCESSORS

Multiprocessors, also known as parallel computers, are computer
systems that have multiple processors or CPUs working together to
execute programs or tasks simultaneously. These processors can
be connected to each other through a shared memory or
interconnect network, allowing them to communicate and
coordinate their actions.

Multiprocessing refers to the use of multiple processors or cores in
a computer system to perform multiple tasks or processes
simultaneously. This allows for improved performance, as different
processes can be executed on different processors or cores,
reducing the overall processing time.

Characteristics of Multiprocessors
Q. Write the characteristics of multiprocessors

» Multiprocessors have multiple CPUs that work together to
perform tasks.

» Multiprocessors use shared memory, where all processors can
access the same physical memory location.

» Multiprocessors typically have a single operating system that
manages all the processors and coordinates their actions.

» Multiprocessors can perform tasks in parallel, which leads to
faster processing times.

» Multiprocessors can be symmetric, where all CPUs are equal, or
asymmetric, where some CPUs have different roles or
capabilities.



» Multiprocessors require a high-bandwidth interconnect to allow
for efficient communication between the CPUs.

» Multiprocessors can be scalable, where additional CPUs can be
added to the system as needed to increase performance.

» Multiprocessors can provide fault tolerance, where a failing CPU
can be replaced by a backup CPU to ensure continued system

operation.

» Multiprocessors can support multiple users or applications
simultaneously, allowing for better resource utilization and

efficiency.

» Multiprocessors are used in a variety of applications, including
scientific computing, database management, and real-time

systems.

Q. How can multiprocessor be classified according to their

memory organization?

Tightly Coupled Multiprocessor

Loosely Coupled Multiprocessor

Interconnected processors sharing
memory and resources

Independent processors with their own
memory and resources

High-speed and complex
interconnection network

Simple and slower interconnection
network

Suited for high-performance and
low-latency applications

Suited for easily parallelizable
applications

Programming model: shared
memory

Programming model: message passing

Scalability is limited due to high
cost and complexity of
interconnection

Scalability is higher due to ease of
adding more processors as
independent units

A failure of one processor can
impact the entire system.

A failure of one processor does not
necessarily impact the entire system.




Q.Describe how the multiprocessor systems increase the
performance level and reliability.

Multiprocessor systems can increase the performance level and
reliability of a computer system in several ways:

>

Parallel Processing: Multiprocessor systems allow multiple
processors to work on a single task simultaneously, using
parallel processing techniques. This can greatly increase the
speed of processing, as each processor can work on different
parts of the task at the same time.

Load Balancing: In a multiprocessor system, the workload can
be balanced between processors, ensuring that no one
processor is overburdened. This can improve the overall
performance of the system and prevent bottlenecks.

Scalability: Multiprocessor systems can be scaled up easily by
adding more processors to the system. This can increase the
processing power of the system as workload increases.

Fault Tolerance: Multiprocessor systems can be designed with
redundancy and fault-tolerant features to improve system
reliability. For example, if one processor fails, another processor
can take over the workload to prevent system failure.

Improved Resource Utilization: Multiprocessor systems can
utilize resources such as memory and input/output devices
more efficiently. Multiple processors can access the same
memory simultaneously, reducing the need for data transfer
between processors.

Improved Throughput: Multiprocessor systems can increase
the throughput of a system by allowing multiple tasks to be
executed simultaneously. This can be particularly beneficial in
real-time data processing environments.



Interconnection structures ( Youtube)

Interconnection structures of multiprocessors refer to the way the
processors are connected to each other and to the memory and
I/O devices in the system.

There are several interconnection structures used in multiprocessor
systems, including:

1. Timed Shared Common Bus

» A time-shared common bus is a type of computer bus that is
shared by multiple devices or components in a computer
system.

» Each device or component that is connected to the bus is given
a specific time slot during which it can use the bus to transfer
data.

» The time slots are usually allocated by a bus controller or
arbiter, which determines the order in which devices can access
the bus.

» When a device wants to use the bus, it requests permission
from the bus controller or arbiter.

> If the bus is currently being used by another device, the
requesting device must wait until its allocated time slot before
it can access the bus.

» Once a device has been granted access to the bus, it can
transfer data to or from other devices that are also connected
to the bus.

» After the device has finished using the bus, it releases control of
the bus so that other devices can access it during their
allocated time slots.


https://www.youtube.com/watch?v=_E5hCwzF6RM&t=151s

The time-shared common bus is a cost-effective solution for
connecting multiple devices or components in a computer
system, as it eliminates the need for dedicated communication
channels between each device.

However, the time-shared nature of the bus means that the
overall performance of the system may be limited by the speed
at which the bus can transfer data between devices.

. Multiport Memory

Multiport memory is a type of memory that has multiple ports,
allowing multiple processors to access the memory
simultaneously.

Each port of the multiport memory has its own independent set
of address and data lines, allowing it to operate independently
of the other ports.

When a processor wants to access the memory, it sends a
memory request to the appropriate port of the multiport
memory.

The multiport memory then performs the memory access and
returns the requested data to the requesting processor.



» Since each port operates independently, multiple processors
can access the memory simultaneously without interfering with
each other.

» Multiport memory can help to improve the performance of a
multiprocessor system by reducing contention for the memory
bus and allowing multiple processors to access the memory
simultaneously.

» However, multiport memory is typically more complex and
expensive than traditional single-port memory, and its use may
be limited by factors such as cost, power consumption, and
availability.

MemoV  IMM1 | [MM2 | [ MM3 | | MM4




. Crossbar Switch

The crossbar switch is composed of a set of input ports, a set of
output ports, and a matrix of switches that connect the inputs
to the outputs.

Each processor is connected to an input port, and each memory
or I/0 device is connected to an output port.

When a processor wants to read from or write to memory or
I/O, it sends a request to the crossbar switch.

The crossbar switch then routes the request to the appropriate
output port based on the memory address or I/0O device
address.

If multiple processors request access to the same memory or
I/O device at the same time, the crossbar switch can prioritize
the requests based on the request type or the priority of the
processors.

The crossbar switch provides a high-speed, low-latency, and
scalable interconnection network that can handle multiple
requests concurrently, making it ideal for multiprocessor
systems.

Memory MM 1 MM 2 MM 3 MM 4

modules
[] [ ] [] []
] 1 [] [ ]
| S—| LI L | -
] (] [] I_]
N LI L -

[ ]
[
[
[}




. Multistage Switching Network

The multistage switching network is composed of multiple
stages, each consisting of a set of switches and connecting links.

Each processor is connected to an input stage, and each
memory or I/O device is connected to an output stage.

The request from the processor is divided into packets and sent
through the switching network, with each packet being directed
through a specific path determined by the switches in each
stage.

Each packet is buffered at each stage before being forwarded
to the next stage, to prevent congestion and ensure reliable
delivery.

The multistage switching network can handle multiple requests
concurrently, making it ideal for high-performance computing
applications.

The multistage switching network provides a fault-tolerant and
scalable interconnection network that can be customized to
meet the specific needs of the multiprocessor system.

0 A 0
1 B 1
A connected to 0 A connected to 1
0 A 0
:§ B 1

B connected to 0 B connected to 1



000
001

010
011

100
101

110
111

. Hypercube System

A hypercube topology consists of nodes that are connected to
each other in a way that forms a geometric hypercube shape.

Each processor is connected to a node in the hypercube, and
each memory or I/O device is also connected to a node.

Requests from processors to memory or I/O devices are sent
through the hypercube to the appropriate destination node.

The hypercube system uses routing algorithms to determine
the optimal path for each request to follow through the
hypercube.

The routing algorithm is based on the destination address of
the request and the current location of the processor.

The hypercube system provides a scalable and fault-tolerant
interconnection network that can handle multiple requests
concurrently.



» The hypercube system can be extended to higher dimensions
to increase the number of nodes and processors that can be
connected, although this increases the complexity and cost of
the system.

One-cube Two-cube Three-cube

Q. Explain inter-processor synchronization with example

Inter-processor synchronization is the process of coordinating the
execution of multiple processors in a multiprocessor system to
ensure that they operate correctly and efficiently. Here's an
example to explain inter-processor synchronization:

Suppose we have two processors, A and B, that are executing a
program that uses a shared variable X. The program increments
the value of X and prints its value to the console.

If both processors increment X at the same time, the output of the
program will be unpredictable, as the value of X will depend on the
order in which the increments are executed. To avoid this, we need
to synchronize the processors using a locking mechanism.

One common locking mechanism is a mutex (short for mutual
exclusion), which allows only one processor to access the shared
variable at a time. Here's how inter-processor synchronization
using a mutex would work:



» Processor A requests a lock on the mutex before accessing the
shared variable X.

> If the mutex is currently unlocked, Processor A acquires the lock
and executes its increment operation on X.

» Processor B attempts to acquire the lock on the mutex, but is
blocked because the lock is already held by Processor A.

» Processor A releases the lock on the mutex after it has finished
accessing X.

» Processor B acquires the lock on the mutex and executes its
increment operation on X.

> Processor B releases the lock on the mutex after it has finished
accessing X.

By using a mutex to coordinate access to the shared variable, we
ensure that the increments of X are executed in a mutually
exclusive manner, and that the output of the program is
predictable and consistent.



	Chapter 7 (10 marks)
	External devices

